eccentricity of the hyperbola is 2x^2-5xy+2y^2+10=10
Answers
Answered by
0
we have to find the eccentricity of the hyperbola is 2x² - 5xy + 2y² + 10 = 0
solution : 2x² - 5xy + 2y² + 10 = 0
⇒x² - 5xy/2 + y² + 5 = 0
⇒x² - 2(5y/4)x + (5y/4)² - (5y/4)² + y² + 5 = 0
⇒(x - 5y/4)² - 25y²/16 + y² + 5 = 0
⇒(4x - 5y)²/16 - 25y²/16 + 16y²/16 + 80/16 = 0
⇒(4x - 5y)² - 9y² + 80 = 0
⇒(4x - 5y)² - 9y² = -80
⇒(4x - 5y)²/9 - y² = -80
⇒y² - (4x - 5y)²/9 = 80
⇒y²/80 - (4x - 5y)²/720 = 1
⇒y²/(4√5)² - (4x - 5y)²/(12√5)² = 1
here a = 12√5 and b = 4√5
so, eccentricity = √(a² + b²)/a
= √{720 + 80}/12√5
= √(800)/12√5
= (20√2)/(12√5)
= (5√2/3√5)
= √10/3
Therefore the eccentricity of the hyperbola is √10/3
Similar questions
Math,
4 months ago
Computer Science,
4 months ago
English,
8 months ago
Math,
8 months ago
Computer Science,
1 year ago