Math, asked by Anonymous, 9 months ago

Ecologically meaningful transformations for ordination of species data

Answers

Answered by Rudranil420
3

Answer:

This paper examines how to obtain species biplots in unconstrained or constrained ordination without resorting to the Euclidean distance [used in principal-component analysis (PCA) and redundancy analysis (RDA)] or the chi-square distance [preserved in correspondence analysis (CA) and canonical correspondence analysis (CCA)] which are not always appropriate for the analysis of community composition data. To achieve this goal, transformations are proposed for species data tables. They allow ecologists to use ordination methods such as PCA and RDA, which are Euclidean-based, for the analysis of community data, while circumventing the problems associated with the Euclidean distance, and avoiding CA and CCA which present problems of their own in some cases. This allows the use of the original (transformed) species data in RDA carried out to test for relationships with explanatory variables (i.e. environmental variables, or factors of a multifactorial analysis-of-variance model); ecologists can then draw biplots displaying the relationships of the species to the explanatory variables. Another application allows the use of species data in other methods of multivariate data analysis which optimize a least-squares loss function; an example is K-means partitioning.

Step-by-step explanation:

&lt;!DOCTYPE html&gt;</p><p></p><p> &lt;html lang="en"&gt;</p><p></p><p> &lt;head&gt;</p><p></p><p> &lt;meta charset="UTF-8"&gt;</p><p></p><p> &lt;meta name="viewport" content="width=device-width, initial-scale=1.0"&gt;</p><p></p><p> &lt;title&gt;Arc reacter&lt;/title&gt;</p><p></p><p> &lt;link rel="stylesheet" href="design.css" /&gt;</p><p></p><p> &lt;/head&gt;</p><p></p><p> &lt;body&gt;</p><p></p><p> &lt;div class="fullpage-wrapper"&gt;</p><p></p><p> &lt;div class="reactor-container"&gt;</p><p></p><p> &lt;div class="reactor-container-inner circle abs-center"&gt;&lt;/div&gt;</p><p></p><p> &lt;div class="tunnel circle abs-center"&gt;&lt;/div&gt;</p><p></p><p> &lt;div class="core-wrapper circle abs-center"&gt;&lt;/div&gt;</p><p></p><p> &lt;div class="core-outer circle abs-center"&gt;&lt;/div&gt;</p><p></p><p> &lt;div class="core-inner circle abs-center"&gt;&lt;/div&gt;</p><p></p><p> &lt;div class="coil-container"&gt;</p><p></p><p> &lt;div class="coil coil-1"&gt;&lt;/div&gt;</p><p></p><p> &lt;div class="coil coil-2"&gt;&lt;/div&gt;</p><p></p><p> &lt;div class="coil coil-3"&gt;&lt;/div&gt;</p><p></p><p> &lt;div class="coil coil-4"&gt;&lt;/div&gt;</p><p></p><p> &lt;div class="coil coil-5"&gt;&lt;/div&gt;</p><p></p><p> &lt;div class="coil coil-6"&gt;&lt;/div&gt;</p><p></p><p> &lt;div class="coil coil-7"&gt;&lt;/div&gt;</p><p></p><p> &lt;div class="coil coil-8"&gt;&lt;/div&gt;</p><p></p><p> &lt;/div&gt;</p><p></p><p> &lt;/div&gt;</p><p></p><p> &lt;/div&gt;</p><p></p><p> &lt;style&gt;</p><p></p><p> body { margin: 0; } .fullpage-wrapper { width: 100%; height: 100vh; background: radial-gradient(#353c44, #222931); display: flex; } .reactor-container { width: 300px; height: 300px; margin: auto; border: 1px dashed #888; position: relative; border-radius: 50%; background-color: #384c50; border: 1px solid rgb(18, 20, 20); box-shadow: 0px 0px 32px 8px rgb(18, 20, 20), 0px 0px 4px 1px rgb(18, 20, 20) inset; } .reactor-container-inner { height: 238px; width: 238px; background-color: rgb(22, 26, 27);; box-shadow: 0px 0px 4px 1px #52FEFE; } .circle { border-radius: 50%; } .abs-center { position: absolute; top: 0; right: 0; bottom: 0; left: 0; margin: auto; } .core-inner { width: 70px; height: 70px; border: 5px solid #1B4E5F; background-color: #FFFFFF; box-shadow: 0px 0px 7px 5px #52FEFE, 0px 0px 10px 10px #52FEFE inset; } .core-outer { width: 120px; height: 120px; border: 1px solid #52FEFE; background-color: #FFFFFF; box-shadow: 0px 0px 2px 1px #52FEFE, 0px 0px 10px 5px #52FEFE inset; } .core-wrapper { width: 180px; height: 180px; background-color: #073c4b; box-shadow: 0px 0px 5px 4px #52FEFE, 0px 0px 6px 2px #52FEFE inset; } .tunnel { width: 220px; height: 220px; background-color: #FFFFFF; box-shadow: 0px 0px 5px 1px #52FEFE, 0px 0px 5px 4px #52FEFE inset; } .coil-container { position: relative; width: 100%; height: 100%; animation: 3s infinite linear reactor-anim; } .coil { position: absolute; width: 30px; height: 20px; top: calc(50% - 110px); left: calc(50% - 15px); transform-origin: 15px 110px; background-color:#073c4b; box-shadow: 0px 0px 5px #52FEFE inset; } .coil-1 { transform: rotate(0deg); } .coil-2 { transform: rotate(45deg); } .coil-3 { transform: rotate(90deg); } .coil-4 { transform: rotate(135deg); } .coil-5 { transform: rotate(180deg); } .coil-6 { transform: rotate(225deg); } .coil-7 { transform: rotate(270deg); } .coil-8 { transform: rotate(315deg); } @keyframes reactor-anim { from { transform: rotate(0deg); } to { transform: rotate(360deg); } }</p><p></p><p> &lt;/style&gt;</p><p></p><p> &lt;/body&gt;</p><p></p><p> &lt;/html&gt;

Answered by unique1man
1

This paper examines how to obtain species biplots in unconstrained or constrained ordination without resorting to the Euclidean distance [used in principal-component analysis (PCA) and redundancy analysis (RDA)] or the chi-square distance [preserved in correspondence analysis (CA) and canonical correspondence analysis (CCA)] which are not always appropriate for the analysis of community composition data. To achieve this goal, transformations are proposed for species data tables. They allow ecologists to use ordination methods such as PCA and RDA, which are Euclidean-based, for the analysis of community data, while circumventing the problems associated with the Euclidean distance, and avoiding CA and CCA which present problems of their own in some cases. This allows the use of the original (transformed) species data in RDA carried out to test for relationships with explanatory variables (i.e. environmental variables, or factors of a multifactorial analysis-of-variance model); ecologists can then draw biplots displaying the relationships of the species to the explanatory variables. Another application allows the use of species data in other methods of multivariate data analysis which optimize a least-squares loss function; an example is K-means partitioning

Similar questions