Math, asked by rajaniket4928, 4 months ago

Education with vocational training is helpful in making a student self-reliant and to help and

serve the society. Keeping this in view, a teacher made the following table giving the

frequency distribution of a student undergoing vocational training from the training

institute.  

Age (in years). Frequency(no.
of participants)
15-19. 62

20-24. 132

25-29. 96

30-34. 37

35-39. 13

40-44. 8

45-49. 6

50-54. 4

55-59. 4

60-above. 3


Median class of above data:

a. 20 - 24

b. 20.5 - 24.5

c. 19.5 - 24.5

d. 24.5 - 29.5

ii. Calculate the median.

a. 24.06

b. 30.07

c. 24.77

d. 42.07

iii. The empirical relationship between mean, median, mode:

a. Mode = 3 Median + 2 Mean

b. Mode = 3 Median - 2 Mean

c. Mode = 3 Mean + 2 Median

d. 3 Mode = Median - 2 Mean

iv. If mode = 80 and mean = 110, then find the median.

a. 200

b. 500

c. 190

d. 100

v. The mode is the:

a. middlemost frequent value

b. least frequent value

c. maximum frequent value

d. none of thes​

Answers

Answered by Yadavdevraj064
0

Answer:

misdiagnosis

53538 \sqrt{6936 =  =262362}

Answered by dhanya81005
17

Answer:

i. c. 19.5-24.5

ii. a. 24.06

iii. b. mode= 3median-2mode

iv. d.100

v. c. maximum frequent value

Step-by-step explanation:

arrange the data with equal class sizes and calculate the cumulative frequency

i.e,

age                 frequency          cumulative frequency

14.5-19.5            62                          62

19.5-24.5          132                         194

24.5-29.5          96                          290

29.5-34.5          37                          327

34.5-39.5          13                           340

39.5-44.5           8                           348

44.5-49.5           6                           354

49.5-54.5           4                           358

54.5-59.5          4                            362

59.5-above        3                           365

i. here, n=365

similarly, n/2=365/2=182.5

therefore, 194 is the nearest value for 182.5...hence, "19.5-24.5" is the median class

option c

ii.  substitute the values from median class,

  median= l+(n/2-cf/f)h

               = 19.5+(182.5-62/132)5

                = 19.5+(120.5*5/132)

               = 19.5+4.56

               =24.06

option a

iii. 3median= mode + 2mean

   on transposing mode to the LHS

       mode= 3median-2mean

iv. 3median=mode+2mean

    median=80+(2*110)/3=80+220/3=300/3=100

option d

v. mode is the most frequent value...

option c

 

Similar questions