Math, asked by khushish2442, 6 months ago

EFGH is a square and TGH is an equilateral triangle . prove TE = TF , angle TFG​

Answers

Answered by Anonymous
3

Answer:

plzz follow me ❤️

Here, PQRS is a square

⇒ PQ=QR=RS=SP [ Sides of square are equal ] ------ ( 1 )

⇒ ∠SPQ=∠PQR=∠QRS=∠RSP=90

o

[ Angles of square ]

△SRT is an equilateral triangle.

⇒ SR=RT=TS [ Sides of equilateral triangle are equal ] ----- ( 2 )

⇒ ∠TSR=∠SRT=∠RTS=60

o

From ( 1 ) and ( 2 ),

⇒ PQ=QR=SP=SR=RT=TS ----- ( 3 )

⇒ ∠TSP=∠TSR+∠RSP=60

o

+90

o

=150

o

⇒ ∠TRQ=∠TRS+∠SRQ=60

o

+90

o

=150

o

⇒ ∠TSP=∠TRQ=150

o

----- ( 4 )

Now, in △TSP and △TRQ

⇒ TS=TR [ From ( 3 ) ]

⇒ ∠TSP=∠TRQ [ From ( 4 ) ]

⇒ SP=RQ [ From ( 3 ) ]

∴ △TSP≅△TRQ [ By SAS congruence rule ]

⇒ PT=QT [ CPCT ] ---- Hence proved

Consider △TQR,

⇒ QR=TR [ From ( 3 ) ]

∴ △TQR is an isosceles triangle.

⇒ ∠QTR=∠TQR [ Angles opposite to equal sides ]

Now, a sum of angles in a triangle is equal to 180

o

.

⇒ ∠QTR+∠TQR+∠TRQ=180

o

⇒ 2∠TQR+150

o

=180

o

[ From ( 4 ) ]

⇒ 2∠TQR=180

o

−150

o

⇒ 2∠TQR=30

o

⇒ ∠TQR=15

o

---- Hence proved

Similar questions