Math, asked by md3441527, 10 months ago

Eind the TSA anodLSA of the
cube whose
side is 21 cm​

Answers

Answered by SarcasticL0ve
15

AnswEr:

⋆ CUBE:

\setlength{\unitlength}{0.65cm}\begin{picture}(2,3)\thicklines\put(2,6){\line(1,0){3.3}}\put(2,9){\line(1,0){3.3}}\put(5.3,9){\line(0,-1){3}}\put(2,6){\line(0,1){3}}\put(0,7.3){\line(1,0){3.3}}\put(0,10.3){\line(1,0){3.3}}\put(0,10.3){\line(0,-1){3}}\put(3.3,7.3){\line(0,1){3}}\put(2,6){\line(-3,2){2}}\put(2,9){\line(-3,2){2}}\put(5.3,9){\line(-3,2){2}}\put(5.3,6){\line(-3,2){2}}\put(3.4,5.5){\sf21 cm}\put(0,6.3){\sf21 cm}\put(5.5,7.5){\sf21 cm}\end{picture}

\;\;\bullet\;\;\sf Side\;of\;the\;cube\;(a)\;is\; \bf{21\;cm}

\rule{150}{2}

\bf \underline{\bigstar\;\;Let's\;head\;to\;the\; Question\;now\;:}\\\\ \sf As\;we\;know\;that,

\maltese\;{\underline{\sf{Total\;surface\;area\;of\;cube\;:\;6a^2}}}\\\\ :\implies\sf 6 \times 21 \times 21\\\\ :\implies{\underline{\boxed{\sf{\pink{2646\;cm^2}}}}}\;\bigstar

\maltese\;{\underline{\sf{Total\;surface\;area\;of\;cube\;:\;4a^2}}}\\\\ :\implies\sf 4 \times 21 \times 21\\\\ :\implies{\underline{\boxed{\sf{\pink{1764\;cm^2}}}}}\;\bigstar\\\\ \therefore\;\sf \underline{Hence,\;TSA\;and\;LSA\;of\;cube\;are\;2646\;cm^2\;and\;1764\;cm^2\; respectively.}

\rule{150}{2}

\star\;{\underline{\underline{\sf{\purple{Additional\; Information}}}}}

  • Cube is a solid three-dimensional figure, having 6 square faces, 8 vertices and 12 edges.

  • It is also known as regular hexahedron.

  • All the sides of cube are equal.

Formulas related to cube:

  • Volume of cube : (edge)³ = a³

  • TSA of cube : 6a³

  • LSA of cube : 4a²

  • Diagonal of face of the cube : \sf \sqrt{2} \times a

  • Diagonal of cube : \sf \sqrt{3} \times a

  • Edge of cube : \sf (volume)^{1/3}
Answered by Thelncredible
0

Given ,

  • Side of cube (a) = 21 cm

We know that , the total surface area of cube is given by

 \boxed{ \sf{TSA = 6 {(a)}^{2} }}

Thus ,

TSA = 6 × (21)²

TSA = 6 × 441

TSA = 2646 cm²

The TSA of cube is 2646 cm²

Now , the lateral surface area of cube is given by

 \boxed{ \sf{LSA = 4 {(a)}^{2} }}

Thus ,

LSA = 4 × (21)²

LSA = 4 × 441

LSA = 1764 cm²

The LSA of cube is 1764 cm²

Similar questions