Psychology, asked by subhamaggarwal888, 1 day ago

Ek admi ke paas 9 diamond the 8 diamond 8 gm ke the aur ek 9 gm ka galti se uske sare diamond mix ho jate hai to wehe ek sunar ke paas jata hai diamond ko tulwane pqr sunaar usko bolta hai ki mai tumko sirf do baar isko tolne dunga to batao wo 9 gm ka diamond kaise dhund payega ?​

Answers

Answered by antima1983singh
0

Answer:

Solution−

Consider,

\begin{gathered}\sf \: \dfrac{1+cos \theta + sin \theta}{1+ cos \theta - sin \theta} \\ \\ \end{gathered}

1+cosθ−sinθ

1+cosθ+sinθ

Divide numerator and denominator by cos\thetaθ , we get

\begin{gathered}\sf \: = \: \dfrac{ \dfrac{1+cos \theta + sin \theta}{cos\theta }}{ \dfrac{1+ cos \theta - sin \theta}{cos\theta }} \\ \\ \end{gathered}

=

cosθ

1+cosθ−sinθ

cosθ

1+cosθ+sinθ

\begin{gathered}\sf \: = \: \dfrac{\dfrac{1}{cos\theta } + \dfrac{cos\theta }{cos\theta } + \dfrac{sin\theta }{cos\theta } }{\dfrac{1}{cos\theta } + \dfrac{cos\theta }{cos\theta } - \dfrac{sin\theta }{cos\theta }} \\ \\ \end{gathered}

=

cosθ

1

+

cosθ

cosθ

cosθ

sinθ

cosθ

1

+

cosθ

cosθ

+

cosθ

sinθ

\begin{gathered}\sf \: = \: \dfrac{sec\theta + 1 + tan\theta }{sec\theta + 1 - tan\theta } \\ \\ \end{gathered}

=

secθ+1−tanθ

secθ+1+tanθ

\begin{gathered}\boxed{ \sf{ \: \because \: \frac{1}{cosx} = secx \: \: and \: \: \frac{sinx}{cosx} = tanx \: }} \\ \\ \end{gathered}

cosx

1

=secxand

cosx

sinx

=tanx

\begin{gathered}\sf \: = \: \dfrac{(sec\theta + tan\theta) + 1 }{sec\theta + 1 - tan\theta } \\ \\ \end{gathered}

=

secθ+1−tanθ

(secθ+tanθ)+1

\begin{gathered}\sf \: = \: \dfrac{(sec\theta + tan\theta) + {sec}^{2}\theta - {tan}^{2} \theta }{sec\theta + 1 - tan\theta } \\ \\ \end{gathered}

=

secθ+1−tanθ

(secθ+tanθ)+sec

2

θ−tan

2

θ

\begin{gathered}\boxed{ \sf{ \: \because \: {sec}^{2}x - {tan}^{2}x = 1 \: }} \\ \\ \end{gathered}

∵sec

2

x−tan

2

x=1

\begin{gathered}\sf \: = \: \dfrac{(sec\theta + tan\theta) + (sec\theta + tan\theta )(sec\theta - tan\theta )}{sec\theta + 1 - tan\theta } \\ \\ \end{gathered}

=

secθ+1−tanθ

(secθ+tanθ)+(secθ+tanθ)(secθ−tanθ)

\begin{gathered}\boxed{ \sf{ \: \because \: {x}^{2} - {y}^{2} = (x + y)(x - y) \: }} \\ \\ \end{gathered}

∵x

2

−y

2

=(x+y)(x−y)

\begin{gathered}\sf \: = \: \dfrac{(sec\theta + tan\theta)[1 + sec\theta - tan\theta ]}{sec\theta + 1 - tan\theta } \\ \\ \end{gathered}

=

secθ+1−tanθ

(secθ+tanθ)[1+secθ−tanθ]

\begin{gathered}\sf \: = \: sec\theta + tan\theta \\ \\ \end{gathered}

=secθ+tanθ

\begin{gathered}\sf \: = \: \dfrac{1}{cos\theta } + \dfrac{sin\theta }{cos\theta } \\ \\ \end{gathered}

=

cosθ

1

+

cosθ

sinθ

\begin{gathered}\boxed{ \sf{ \: \because \: \frac{1}{cosx} = secx \: \: and \: \: \frac{sinx}{cosx} = tanx \: }} \\ \\ \end{gathered}

cosx

1

=secxand

cosx

sinx

=tanx

\begin{gathered}\sf \: = \: \dfrac{1 + sin\theta }{cos\theta } \\ \\ \end{gathered}

=

cosθ

1+sinθ

Hence,

\begin{gathered}\bf\implies \:\dfrac{1}{cos\theta } + \dfrac{cos\theta }{cos\theta } + \dfrac{sin\theta }{cos\theta } = \: \dfrac{1 + sin\theta }{cos\theta } \\ \\ \\ \end{gathered}

cosθ

1

+

cosθ

cosθ

+

cosθ

sinθ

=

cosθ

1+sinθ

Similar questions