Math, asked by swathi6167, 1 year ago

एक चित्र में BL तथा CM समकोण त्रिभुज ABC की मध्यिकाए है तथा इस त्रिभुज का कोण A समकोण है सिद्ध कीजिए कि 4(BL)^2+4(CM)^2=5(BC)^2

Answers

Answered by MaheswariS
3

\textbf{Pythagors theorem:}

\text{In a right angled triangle, square on the hypotenuse is equal}

\text{to sum of the squares on the other two sides.}

\textbf{Given:}

\text{BL and CM are medians of right triangle ABC}

\textbf{To prove:}

4(BL^2+CM^2)=5\,BC^2

\textbf{Solution:}

\text{Since BL and CM are medians of right triangle ABC,}

\text{Then, $AL=\frac{AC}{2}$ and $AM=\frac{AB}{2}$}.........(1)

\text{In $\triangle$BAL, by pythagoras theorem}

BL^2=AB^2+AL^2.......(2)

\text{In $\triangle$MAC, by pythagoras theorem}

CM^2=AM^2+AC^2.......(3)

\text{In $\triangle$BAC, by pythagoras theorem}

BC^2=AB^2+AC^2.......(4)

\text{Adding (2) and (3), we get}

BL^2+CM^2=AB^2+AL^2+AM^2+AC^2

BL^2+CM^2=(AB^2+AC^2)+AL^2+AM^2

\text{Using (4), we get}

BL^2+CM^2=BC^2+AL^2+AM^2

\text{Using (1), we get}

BL^2+CM^2=BC^2+(\frac{AC}{2})^2+(\frac{AB}{2})^2

BL^2+CM^2=BC^2+\frac{AC^2}{4}+\frac{AB^2}{4}

BL^2+CM^2=BC^2+\frac{1}{4}[AB^2+AC^2]

BL^2+CM^2=BC^2+\frac{1}{4}BC^2

BL^2+CM^2=\frac{4\,BC^2+BC^2}{4}

BL^2+CM^2=\frac{5\,BC^2}{4}

\implies\boxed{\bf\,4(BL^2+CM^2)=5\,BC^2}

Attachments:
Similar questions