एक पिंड के वेग समय ग्राफ से उसके द्वारा तय की गई कुल दूरी आप कैसे ज्ञात करेंगे?
class-9
chapter gati
Answers
गति के ग्राफ और लाइनें
लाइनों का नामकरण - लेख में हमारी चर्चा का विषय थीं लाइनें - सीधी सपाट लाइनें। उस लेख में हमने लाइनों को एक-दूसरे से अलग-अलग पहचानने के ग्राफ-आधारित एक तरीके पर बात की थी। साथ ही यह भी देखा था कि एक ग्राफ पर दो अक्षों के सापेक्ष खींची गई एक लाइन का इस्तेमाल हम उन दो अक्षों को दर्शाती राशियों के बीच के सरल-रेखीय सम्बन्ध को दर्शाने के लिए भी करते हैं।
इस लेख में हम गति से जुड़े ग्राफ व उनमें खींची लाइनों पर बात करेंगे। हम देखेंगे कि ये लाइनें क्या दर्शाती हैं और क्या नहीं, और कोशिश करेंगे गति के समीकरणों को इन लाइनों के ज़रिए समझने की।
दूरी-समय ग्राफ
तो आइए शुरुआत करते हैं - एक दूरी-समय ग्राफ व उसमें खींची दो लाइनों से (चित्र-1) और देखते हैं कि इस ग्राफ से हम क्या जान सकते हैं। सबसे पहले हम देखते हैं कि दूरी-समय ग्राफ के मामले में हमने अक्ष-y पर दूरी व अक्ष- x पर समय को दर्शाया है। समय को घण्टों व दूरी को किलोमीटर में लिया गया है।1
अगली बात जो इस ग्राफ में दिखाई देती है वो यह कि इसमें लाइन L1 व L2 के माध्यम से दो अलग-अलग गतियों को दर्शाया गया है। अब ये गतियाँ एक ही वस्तु की दो अलग-अलग दिनों की गति है (जैसे किसी धावक के दो अलग-अलग दिनों की प्रैक्टिस का रिकॉर्ड या एक ही बस की दो अलग-अलग दिनों की गति) या दो अलग-अलग वस्तुओं की एक ही समय पर गतियाँ (जैसे कि दो धावकों की एक दौड़ प्रतियोगिता, या एक ही समय पर दो बसों का बस-स्टाप से छूटना), इसके बारे में अकेले ग्राफ को देखकर तो कुछ भी पता नहीं चलता। एक और बात जो इस ग्राफ से हमें नहीं पता चलती है वो यह कि ये गतियाँ किस दिशा में या किस पथ पर हुई हैं। उदाहरण के तौर पर अगर हम यह मान लें कि यह ग्राफ दो धावकों की एक मैराथॉन दौड़ से जुड़ा हुआ है तो इस ग्राफ को देखकर हम यह नहीं बता सकते कि धावक किसी स्टेडियम के अन्दर ही गोल-गोल चक्कर लगा रहे थे या फिर खुली सड़क पर दौड़ रहे थे।
यह तो रही बात कि यह ग्राफ हमें क्या नहीं बतलाता। अब ज़रा देख लें कि यह ग्राफ हमें बतलाता क्या है। हम ग्राफ पर खींची हर एक लाइन के लिए Y-अन्त:-खण्ड व ढलान निकाल सकते हैं। Y-अन्त:-खण्ड का मान निकालने के लिए हमें यह देखना होता है कि लाइन अक्ष-Y को किस बिन्दु पर काट रही है। चित्र-1 के मामले में दोनों लाइनें दूरी के अक्ष को एक ही बिन्दु (0, 20) पर काट रही हैं, इसलिए इन दोनों के लिए y-अन्त:-खण्ड का मान होगा c1 = c2 = 20। इसी तरह ढलान निकालने के लिए हमें बारी-बारी से दोनों लाइनों पर कोई भी दो बिन्दु (t1, d1) व (t2, d2) लेने होंगे और समीकरण 1 में दिखलाया गया अनुपात निकालना होगा: