Math, asked by adarshyadav428azm, 2 months ago

एक्स अपऑन ए प्लस बी अपॉन बी इक्वल टू ए प्लस बी एंड एक्स अपॉन ए स्क्वायर प्लस वन अपॉन बी स्क्वायर इक्वल टू 2 एंड फाइंड द वैल्यू ऑफ एक्स वाई 55 ​

Answers

Answered by mathdude500
2

Solve for x and y :-

 \tt \:  ⟼ \dfrac{x}{a}  + \dfrac{y}{b}  = a + b

 \tt \:  ⟼ \dfrac{x}{ {a}^{2} }  + \dfrac{y}{ {b}^{2} }  = 2

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

☆ Given Ist equation

 \tt \:  ⟼ \dfrac{x}{a}  + \dfrac{y}{b}  = a + b

 \tt \:  ⟼ \dfrac{bx + ay}{ab}  = a + b

 \tt \:  ⟼ bx + ay =  {ba}^{2}  +  {ab}^{2}  -  -  - (1)

☆ Given second equation

 \tt \:  ⟼ \dfrac{x}{ {a}^{2} }  + \dfrac{y}{ {b}^{2} }  = 2

 \tt \:  ⟼ \dfrac{x {b}^{2}  + y {a}^{2}  }{ {a}^{2} {b}^{2}  }  = 2

 \tt \:  ⟼  {xb}^{2}  +  {ya}^{2}  = 2 {a}^{2}  {b}^{2}   -  -  -  - (2)

☆ Now, solving equation (1) and (2) by method of elimination.

☆ Multiply equation (1) by b, we get

 \tt \:  ⟼  {xb}^{2}  + aby =  {a}^{2}  {b}^{2}  +  {ab}^{3}  -  -  - (3)

☆ Now, Subtracting equation (2) from equation (3), we get

 \tt \:  ⟼ aby -  {ya}^{2}  =  {ab}^{3}  -  {a}^{2}  {b}^{2}

 \tt \:  ⟼ ay(b - a) =  {ab}^{2} (b - a)

\bf\implies \:y =  { b}^{2}  -  -  - (4)

☆ Now, substituting equation (4) in equation (2), we get

 \tt \:  ⟼  {xb}^{2}  +  {a}^{2}  {b}^{2}  =  {2a}^{2}  {b}^{2}

 \tt \:  ⟼  {xb}^{2}  =  {2a}^{2}  {b}^{2}  -  {a}^{2}  {b}^{2}

 \tt \:  ⟼  {xb}^{2}  =  {a}^{2}  {b}^{2}

\bf\implies \:x =  {a}^{2}  -  -  - (5)

\begin{gathered}\begin{gathered}\bf Hence -  \begin{cases} &\tt{x \:  =  {a}^{2} } \\ &\tt{y \:  =  {b}^{2} } \end{cases}\end{gathered}\end{gathered}

Similar questions