Math, asked by sinharishika, 1 year ago

एक्स स्क्वायर प्लस 3 एक्स प्लस टू डिवाइडेड बाय एक्स प्लस वन

Answers

Answered by saltywhitehorse
19

Answer:

Step-by-step explanation:

\frac{x^{2}+3x+2}{x+1}=1\\\\\Rightarrow{x^{2}+3x+2}={x+1}\\\\\Rightarrow{x^{2}+3x+2-x-1=0\\\\\Rightarrow{x^{2}+2x+1}=0\\\\\Rightarrow{(x+1)^{2}=0

\\\\\Rightarrow{x+1}=0\\\\\Rightarrow{x}=-1

Answered by FelisFelis
3

Given:

The given expression is \dfrac{x^2+3x+2}{x+1}.

Find:

Calculate the simplified form of the expression.

Solution:

Consider the given expression.

Factor the numerator as shown:

\dfrac{x^2+3x+2}{x+1}=\dfrac{x^2+2x+x+2}{x+1}\\=\dfrac{x(x+2)+1(x+2)}{x+1}\\=\dfrac{(x+2)(x+1)}{x+1}

Cancel out the common terms.

\dfrac{x^2+3x+2}{x+1}=(x+2)

Hence, the simplified form is x+2.

Similar questions