एक्सप्रेस ऑल ट्रिगोनोमेट्रिक रेश्योस इन द टर्म्स ऑफ़ टेन थीटा
Answers
Step-by-step explanation:
consider @ as thetha pls
sin²@ = 1- cos²@ = 1-1/sec²@1-1/1+tan²@
sin2@= 1 -1/1+tan²@= tan²@/1+tan²@
sin@= tan@/√1+tan²@
similarly for cos@= tan@/√1+tan²@
cosec @= √1+tan²@/tan@
sec@ =√1+tan²@/tan@
cot @= 1/ tan@
hope it may help you
pls mark as brainliests plssss
Suppose theta = x.
Let tan x= k or. k/1.
Construct a right angled triangle ABC , in which angle B =90°, angle ACB = x and
perpendicular AB= k units , and base BC=1 units.
AC^2= BC^2 + AB^2.
AC^2= (1)^2+(k)^2.
or. Hypotenuse AC= √(1+k^2).
sin x= AB/AC = k/√(1+k^2) = tan x/√(1+tan^2 x).l- .(1).
cos x= BC/AC = 1/√(1+k^2) = 1/√(1+ tan ^2 x)- .(2).
cot x= BC/AB= 1/k = 1/tan x…..(3).
sec x= AC/BC= √(1+k^2)/1. = √(1+tan^2 x)….(4).
cosec x= AC/AB = √(1+k^2)/k = √(1+tan^2 x)/tan x……(5)
_______________________
Or also,
Instead of theeta let us take A
Sin A = tan A/√(1+tan^2 A)
Cos A = 1/√(1+tan^2 A)
Cosec A = {√(1+tan^2 A)}/tan A
Sec A = √(1 + tan^2 A)
CotA = 1/tan A