Math, asked by rajatrajawat05, 1 month ago

एक टंकी में तीन नल P. Q तथा R लगे हुए हैं। नल R टंकी को 'खाली करने वाला नल है नल Pतथा Q टंकी को अलग-अलग क्रमशः 12 मिनट तथा 16 मिनट में भरने की क्षमता रखते हैं। तोनों नल एक साथ खोलने के कुछ समय बाद नल R को बन्द कर दिया जाता है जिसके कारण टंकी 20 मिनट में भर जाती है। नल R पूरी टंकी को कितने समय में खाली कर देगा ?​

Answers

Answered by kripananma20
0

Answer:

mark me brainlist

Step-by-step explanation:

SOLUTION

⇒ 1 मिनट में, P भर सकता है = टंकी का 1/(x - 25) भाग

⇒ 1 मिनट में, नल Q भर सकता है = टंकी का 1/100 भाग

⇒ 1 मिनट में, नल R भर सकता है = टंकी का 1/(x + 25) भाग

प्रश्नानुसार,

1/(x - 25) + 1/100 + 1/(x + 25) = 19/300

⇒ 1/(x - 25) + 1/(x + 25) = 19/300 - 1/100

⇒ 2x/(x2 - 625) = (19 - 3)/300

⇒ x/(x2 - 625) = 2/75

⇒ 2x2 - 1250 = 75x

⇒ 2x2 - 75x - 1250 = 0

⇒ 2x2 - 100x + 25x - 1250 = 0

⇒ 2x(x - 50) + 25(x - 50) = 0

⇒ (x - 50) (2x + 25) = 0

⇒ x = 50 या x = -25/2 (ऋणात्मक मान को नज़रंदाज़ करते हैं)

अतः नल P टंकी को (50 - 25) मिनट = 25 मिनट में भर सकता है।

नल Q टंकी को 100 मिनट में भर सकता है।

नल R टंकी को (50 + 25) मिनट = 75 मिनट में भर सकता है।

माना टंकी की क्षमता (25, 100 और 75 का ल.स.प.) अर्थात्, 300 लीटर है।

1 मिनट में, नल P भर सकता है = 300/25 = 12 लीटर

1 मिनट में, नल Q भर सकता है = 300/100 = 3 लीटर

1 मिनट में, नल R भर सकता है = 300/75 = 4 लीटर

⇒ 10 मिनट में, नल R से टंकी में तलसक्रियकारक का भाग = 4 × 10 = 40 लीटर

⇒ 10 मिनट में, तीनों नलों से टंकी में कुल मिश्रण = 10(12 + 3 + 4) = 190 लीटर

∴ टंकी में 10 मिनट में तलसक्रियकारक मिश्रण का अनुपात = 40/190 = 4/19

Similar questions