एक त्रिभुज ABC में, समकोण B पर है, BC = 15 सेंटीमीटर और AB=8 सेंटीमीटर है। यदी त्रिभुज ABC का परिवृत्त बनाया गया है, तो वृत्त की त्रिज्या ज्ञात कीजिए । A)4cm B)3cm C)1cm D)2cm
Answers
Answered by
0
Step-by-step explanation:
In right angled triangle ABC , AC^2 = AB^2+BC^2.
or. AC^2 = 8^2+15^2 =289. or. AC= 17 cm.
Area of triangle ABC= (8×15)/2 = 60 cm^2.
s = (AB+BC+CA)/2.=(8+15+17)/2= 20 cm.
Radius (r) of inscribed circle = area of ∆/s = 60 cm^2/20 cm. = 3 cm. Answer.
Given :
ABC is a right angled triangle.
Angle, B = 90°
AB= 8cm
BC=15 cm.
Let the ra8dius of the incircle be, r.
r=A/s
Where A=area of the triangle.
s= semi perimeter
A=15x8/2 =60 cm.
s= (AB+ BC + CA)/2
Here AB, BC are given. CA is to be found out.
CA= √(AB^2+BC^2)= √(8^2+15^2)
√(64+225)=17
Therefore, s= ( 8+15+17)/2=20
r = A/s = 60/20=3 cm.
Similar questions