Math, asked by kumodkumar33, 1 year ago

एक द्विघात बहुपद ज्ञात कीजिए जिसके शून्यक बहुपद X²-X-1के शुन्यकों का वर्ग है।​

Answers

Answered by yallboymoney2061
3

Answer:

yfillllllllllllllllllll

Step-by-step explanation:

Answered by lublana
1

The equation of polynomial=x^2-3x+1=0

Step-by-step explanation:

Given polynomial

x^2-x-1

Quadratic formula:x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

Where a=Coefficient of x^2

b=Coefficient of x

c=Constant term

a=1,b=-1 and c=-1

Using the formula

x=\frac{1\pm\sqrt{1-4(1)(-1)}}{2}

x=\frac{1\pm\sqrt 5}{2}

The roots of the given polynomial are

x=\frac{1+\sqrt 5}{2}, x=\frac{1-\sqrt 5}{2}

\alpha=x^2=(\frac{1+\sqrt 5}{2})^2=\frac{1+5+2\sqrt 5}{4}=\frac{6+2\sqrt 5}{4}=\frac{3+\sqrt 5}{2}

\beta=(\frac{1-\sqrt 5}{2})^2=\frac{1+5-2\sqrt 5}{4}=\frac{6-2\sqrt 5}{4}=\frac{3-\sqrt 5}{2}

By using formula

(a+b)^2=a^2+b^2+2ab

(a-b)^2=a^2+b^2-2ab

\alpha+\beta=\frac{3+\sqrt 5}{2}+\frac{3-\sqrt 5}{2}

\alpha+\beta=\frac{3+3+\sqrt5 -\sqrt 5}{2}=\frac{6}{2}=3

\alpha\beta=\frac{3+\sqrt 5}{2}\times\frac{3-\sqrt 5}{2}=\frac{3^2-(\sqrt 5)^2}{4}=\frac{9-5}{4}=\frac{4}{4}=1

By using the formula

(a+b)(a-b)=a^2-b^2

General equation of quadratic polynomial

x^2-(\alpha+\beta)+\alpha\beta

Substitute the values

x^2-3x+1=0

This is required equation of polynomial.

#Learns more:

https://brainly.in/question/11494303

Similar questions