El punto P(1,1/2) está sobre la curva y=x/(1+x).
(a) Si Q es el punto (x,x/(1+x)), use su calculadora para hallar la pendiente de la recta secante PQ (correcta hasta seis cifras decimales) para los valores de x que se enumeran a continuación:
(i) 0.5 (ii) 0.9 (iii) 0.99 (iv) 0.999 (v) 1.5 (vi) 1.1 (vii) 1.01 (viii) 1.001
(b) Mediante los resultados del inciso (a) conjeture el valor de la pendiente de la recta tangente a la curva en P (1,1/2).
(c) Usando la pendiente del inciso (b) encuentre la ecuación de la recta tangente a la curva en P (1,1/2).
Answers
Answer:
Teacher is god of the polynomial f the same time as the one jdjg
Step-by-step explanation:
0.5
Answer:
The Slope of PQ line according to given values of x are:
(i). 0.333, (ii). 0.27, (iii). 0.3, (iv). 1, (v). 0.2, (vi). 0.23, (vii). 0.2, (viii). 0.2
Step-by-step explanation:
The equation of the curve is (Given).
And point P(1, 1/2) lie on the given curve.
Given the another point is Q().
(i). If we put x = 0.5, then
After putting the value, the point Q is (0.5, 1/3).
So, the slope of PQ line =
=
= 0.333
(ii). Similarly, at x = 0.9,
Then point Q is ( 0.9, 0.473).
So, the slope of PQ line =
(iii). At x= 0.99,
Then point Q is (0.99, 0.497).
So, the slope of PQ line =
(iv). At x = 0.999,
Then point Q is (0.999, 0.499).
So, the Slope of PQ line =
(v). At x = 1.5,
Then point Q is ( 1.5, 0.6).
So, the slope of PQ line =
(vi). At x = 1.1,
Then point Q is (1.1, 0.523).
So, the slope of PQ line =
(vii). At x= 1.01,
Then point Q is (1.01, 0.502).
So, the slope of PQ line =
(viii). At x = 1.001,
Then point Q is (1.001, 0.5002).
So, the slope of PQ line =