Math, asked by elinorandrea7, 15 days ago

Elaborate all the steps involved

Attachments:

Answers

Answered by mathdude500
7

Given Question :- The sum of the series is

\rm \: 1 + \dfrac{1}{4.2!}  + \dfrac{1}{16.4!}  + \dfrac{1}{64.6!}  +  \cdots \cdots \:  \infty  \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \: 1 + \dfrac{1}{4.2!}  + \dfrac{1}{16.4!}  + \dfrac{1}{64.6!}  +  \cdots \cdots \:  \infty  \\

We know, from exponential series

 \red{\rm \:  {e}^{x} = 1 + x +  \frac{ {x}^{2} }{2!} +  \frac{ {x}^{3} }{3!} +  \frac{ {x}^{4} }{4!} +  \cdots \cdots} \\

and

 \red{\rm \:  {e}^{ - x} = 1 - x +  \frac{ {x}^{2} }{2!} - \frac{ {x}^{3} }{3!} +  \frac{ {x}^{4} }{4!} +\cdots \cdots} \\

On adding above two equations, we get

 \red{\rm \:  {e}^{x} + {e}^{ - x} = 2 +  \frac{ 2{x}^{2} }{2!} + \frac{ 2{x}^{4} }{4!} +  \frac{2 {x}^{6} }{6!} +\cdots \cdots} \\

 \red{\rm \:  {e}^{x} + {e}^{ - x} = 2\bigg(1 +  \frac{ {x}^{2} }{2!} + \frac{ {x}^{4} }{4!} +  \frac{{x}^{6} }{6!} +\cdots \cdots\bigg)} \\

can be further rewritten as

 \red{\rm \:  \dfrac{1}{2}({e}^{x} + {e}^{ - x}) = 1 +  \frac{ {x}^{2} }{2!} + \frac{ {x}^{4} }{4!} +  \frac{{x}^{6} }{6!} +\cdots \cdots} \\

Now, on substituting x = \frac{1}{2} , we get

{\rm \:  \dfrac{1}{2}({e}^{ \frac{1}{2} } + {e}^{ -  \frac{1}{2} }) = 1 +  \frac{ {( \frac{1}{2})}^{2} }{2!} + \frac{ {( \frac{1}{2})}^{4} }{4!} +  \frac{{( \frac{1}{2})}^{6} }{6!} +\cdots \cdots} \\

 {\rm \:  \dfrac{1}{2}\bigg( \sqrt{e} + \dfrac{1}{ \sqrt{e} }  \bigg)  = 1 +  \frac{1}{4.2!} + \frac{1}{16.4!} +  \frac{1}{64.6!} +\cdots \cdots} \\

 {\rm \:  \dfrac{1}{2}\bigg(\dfrac{e + 1}{ \sqrt{e} }  \bigg)  = 1 +  \frac{1}{4.2!} + \frac{1}{16.4!} +  \frac{1}{64.6!} +\cdots \cdots} \\

Hence,

\rm\implies \boxed{ \rm{1+\dfrac{1}{4.2!}+\dfrac{1}{16.4!}+\dfrac{1}{64.6!}  +\cdots \infty  =  \frac{e + 1}{2 \sqrt{e} } }} \\

\rule{190pt}{2pt}

Additional Information :-

\boxed{ \rm{ \:{\rm \: e = 1 + 1+  \frac{1}{2!} +  \frac{1}{3!} +  \frac{1}{4!} +  \cdots \cdots} }}\\

\boxed{ \rm{ \:{\rm \:  {e}^{ - 1} = \frac{1}{2!}  -  \frac{1}{3!} +  \frac{1}{4!} +  \cdots \cdots} }}\\

\boxed{ \rm{ \:{\rm \:e + {e}^{ - 1} =2\bigg(1 +  \frac{1}{2!} + \frac{1}{4!} +  \frac{1}{6!} +\cdots \cdots} \bigg)}}\\

\boxed{ \rm{ \:{\rm \:e  -  {e}^{ - 1} =2\bigg(1 + \frac{1}{3!} + \frac{1}{5!} +  \frac{1}{7!} +\cdots \cdots} \bigg)}}\\

Answered by Rina86169
2

Answer:

Given Question :- The sum of the series is

\rm \: 1 + \dfrac{1}{4.2!}  + \dfrac{1}{16.4!}  + \dfrac{1}{64.6!}  +  \cdots \cdots \:  \infty  \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \: 1 + \dfrac{1}{4.2!}  + \dfrac{1}{16.4!}  + \dfrac{1}{64.6!}  +  \cdots \cdots \:  \infty  \\

We know, from exponential series

 \red{\rm \:  {e}^{x} = 1 + x +  \frac{ {x}^{2} }{2!} +  \frac{ {x}^{3} }{3!} +  \frac{ {x}^{4} }{4!} +  \cdots \cdots} \\

and

 \red{\rm \:  {e}^{ - x} = 1 - x +  \frac{ {x}^{2} }{2!} - \frac{ {x}^{3} }{3!} +  \frac{ {x}^{4} }{4!} +\cdots \cdots} \\

On adding above two equations, we get

 \red{\rm \:  {e}^{x} + {e}^{ - x} = 2 +  \frac{ 2{x}^{2} }{2!} + \frac{ 2{x}^{4} }{4!} +  \frac{2 {x}^{6} }{6!} +\cdots \cdots} \\

 \red{\rm \:  {e}^{x} + {e}^{ - x} = 2\bigg(1 +  \frac{ {x}^{2} }{2!} + \frac{ {x}^{4} }{4!} +  \frac{{x}^{6} }{6!} +\cdots \cdots\bigg)} \\

can be further rewritten as

 \red{\rm \:  \dfrac{1}{2}({e}^{x} + {e}^{ - x}) = 1 +  \frac{ {x}^{2} }{2!} + \frac{ {x}^{4} }{4!} +  \frac{{x}^{6} }{6!} +\cdots \cdots} \\

Now, on substituting x = \frac{1}{2} , we get

{\rm \:  \dfrac{1}{2}({e}^{ \frac{1}{2} } + {e}^{ -  \frac{1}{2} }) = 1 +  \frac{ {( \frac{1}{2})}^{2} }{2!} + \frac{ {( \frac{1}{2})}^{4} }{4!} +  \frac{{( \frac{1}{2})}^{6} }{6!} +\cdots \cdots} \\

 {\rm \:  \dfrac{1}{2}\bigg( \sqrt{e} + \dfrac{1}{ \sqrt{e} }  \bigg)  = 1 +  \frac{1}{4.2!} + \frac{1}{16.4!} +  \frac{1}{64.6!} +\cdots \cdots} \\

 {\rm \:  \dfrac{1}{2}\bigg(\dfrac{e + 1}{ \sqrt{e} }  \bigg)  = 1 +  \frac{1}{4.2!} + \frac{1}{16.4!} +  \frac{1}{64.6!} +\cdots \cdots} \\

Hence,

\rm\implies \boxed{ \rm{1+\dfrac{1}{4.2!}+\dfrac{1}{16.4!}+\dfrac{1}{64.6!}  +\cdots \infty  =  \frac{e + 1}{2 \sqrt{e} } }} \\

\rule{190pt}{2pt}

Additional Information :-

\boxed{ \rm{ \:{\rm \: e = 1 + 1+  \frac{1}{2!} +  \frac{1}{3!} +  \frac{1}{4!} +  \cdots \cdots} }}\\

\boxed{ \rm{ \:{\rm \:  {e}^{ - 1} = \frac{1}{2!}  -  \frac{1}{3!} +  \frac{1}{4!} +  \cdots \cdots} }}\\

\boxed{ \rm{ \:{\rm \:e + {e}^{ - 1} =2\bigg(1 +  \frac{1}{2!} + \frac{1}{4!} +  \frac{1}{6!} +\cdots \cdots} \bigg)}}\\

\boxed{ \rm{ \:{\rm \:e  -  {e}^{ - 1} =2\bigg(1 + \frac{1}{3!} + \frac{1}{5!} +  \frac{1}{7!} +\cdots \cdots} \bigg)}}\\

Similar questions