Physics, asked by Enakashi9095, 9 months ago

Electric charges 1mc,-1mc and 2mc are in air at corners a,band c of equilateral triangle abc having length 10 cm resultant force o charge at c is

Answers

Answered by Anonymous
5

\color{darkblue}\underline{\underline{\sf Given-}}

\underline{\sf In \: equilateral \: traingle}

  • Charge on point A = 1mC
  • Charge on point B = -1mC
  • Charge on point C = 2mC
  • Lenght of equilateral traingle = 10cm

\color{darkblue}\underline{\underline{\sf To \: Find -}}

  • Resultant force at point C

\color{darkblue}\underline{\underline{\sf Formula \: Used -}}

Coulomb's Law

\color{violet}\bullet\underline{\boxed{\sf F=9×10^9\dfrac{Q_1Q_2}{r^2}}}

\color{darkblue}\underline{\underline{\sf Solution-}}

\implies{\sf F_A=Force \: on \: point \: C \: due \; to \: Charge \: A}

\implies{\sf F_A=9×10^9\dfrac{10^{-3}×2×10^{-3}}{(10×10^{-2})^2}}

\implies{\sf \dfrac{18×10^3}{100×10^{-4}}}

\implies{\sf \dfrac{18×10^3}{10^{-2}}}

\color{orange}\implies{\sf F_A= 18×10^5\:N }

\implies{\sf F_B=Force \: on \: point \: C \: due \; to \: Charge \: B}

\implies{\sf F_B=9×10^9\dfrac{10^{-3}×2×10^{-3}}{(10×10^{-2})^2}}

\implies{\sf \dfrac{18×10^3}{100×10^{-4}}}

\implies{\sf \dfrac{18×10^3}{10^{-2}}}

\color{orange}\implies{\sf F_B=18×10^5\:N }

Net force on point C

\implies{\sf F_{net}=\sqrt{(F_A)^2+(F_B)^2+2F_1F_2cos120°}}

\implies{\sf F_{net}=\sqrt{(18×10^5)^2+(18×10^5)^2+2×18×10^5×cos120°}}

cos120° = -½

\implies{\sf F_{net}=\sqrt{(18×10^5)^2+(18×10^5)^2+2×18×10^5×\left(-\dfrac{1}{2}\right)}}

\implies{\sf F_{net}=\sqrt{(18×10^5)^2+(18×10^5)^2-(18×10^5)^2}}

\implies{\sf \sqrt{(18×10^5)^2 }}

\color{red}\implies{\sf F_{net}=18×10^5\:N}

\color{darkblue}\underline{\underline{\sf Answer-}}

★Net force on charge C is \color{red}{\sf 18×10^5\:N}

Attachments:
Answered by Anonymous
3

 \mathtt{\huge{ \fbox{Solution :)}}}

Given ,

  • The three point charges i.e 1 mc ,-1 mc and 2 mc are located at the corners of equilateral triangle ΔABC

  • The length of side of equilateral triangle is 10 cm

We know that , the electrostatic force between two charges is given by

 \large \mathtt{ \fbox{F = k \frac{ q_{1}q_{2}}{ {(r)}^{2} } }}

Thus ,

The force on C due to A is

 \sf \hookrightarrow F_{CA} =  \frac{9 \times  {(10)}^{9}  \times 1 \times  {(10)}^{ - 3}  \times 2 \times  {(10)}^{ - 3} }{ {(10 \times  {(10)}^{ - 3} )}^{2} }  \\  \\  \sf \hookrightarrow F_{CA} = \frac{18 \times  {(10)}^{3} }{ {(10)}^{  - 2} }  \\  \\  \sf \hookrightarrow F_{CA} =18 \times  {(10)}^{5}  \:  \: newton

Since , the magnitude of charge at A is same as charge at point B

Thus ,

 \sf \underline{ \fbox{F_{CA} = F_{CB} =F \: ( Let) }}

The resultant force of   \mathtt{ F_{CA} } and   \mathtt{ F_{CB} } is

 \sf \hookrightarrow Force=  \sqrt{ {(F)}^{2}  +  {(F)}^{2} + 2 {(F)}^{2}   \cos(120) }  \\  \\ \sf \hookrightarrow Force=  \sqrt{2 {(F)}^{2}  - \cancel 2 {(F)}^{2}  \times  \frac{1}{ \cancel2} }  \\  \\ \sf \hookrightarrow Force=  \sqrt{ {(F)}^{2} }  \\  \\  \sf \hookrightarrow Force=F \\  \\  \sf \hookrightarrow Force=  18 \times  {(10)}^{5}   \:  \: newton

Hence , the force on C due to A and B is 18 × (10)^5 Newton

______________ Keep Smiling

Similar questions