Physics, asked by lvreddy91, 16 days ago

electric circuit problems with diagrams​

Answers

Answered by bmdeep
0

Answer: With having the power of 2\Omega2Ω resistor, we can find the current through it as below

P=RI^2_{2\Omega }\Rightarrow I_{2\Omega }=\sqrt{\frac{8}{2}}=2\ {\rm A}

P=RI

2

⇒I

=

2

8

=2 A

Before closing the switch: The resistors are in series so R_{eq}=2+4=6\ \OmegaR

eq

=2+4=6 Ω and {\mathcal E}=R_{eq}IE=R

eq

I or {\mathcal E}=Q_{tot}/C_{eq}E=Q

tot

/C

eq

 so

{\mathcal E}=R_{eq}I=6\times 2=12\ {\rm V}

E=R

eq

I=6×2=12 V

And the capacitors are in series so C_{eq}=\frac{6\times 3}{6+3}=2\ \mu {\rm F}C

eq

=

6+3

6×3

=2 μF. Recall that all capacitors in series have the same charge i.e. Q_3=Q_6=Q_{tot}Q

3

=Q

6

=Q

tot

\Rightarrow Q_{tot}=C_{eq}{\mathcal E}{\rm =2\times 12=24\ }\mu {\rm C}

⇒Q

tot

=C

eq

E=2×12=24 μ C

After closing the switch: since there are no components between aa and bb, so the V_a=V_bV

a

=V

b

. The point cc and dd are directly connected to the positive and negative terminals of the battery, respectively so V_c=12{\rm \ V}V

c

=12 V and V_d=0V

d

=0.

In steady state, we only have current through resistors so again the current in the circuit is I=2{\rm \ A}I=2 A. Apply the loop rule to the adcadc to find the V_aV

a

 as

\begin{gather*} V_a+2I=V_c \\ \Rightarrow V_a=12-2\left(2\right)=8\quad {\rm V} \\ \therefore V_a=V_b=8\ {\rm V}\end{gather*}

V

a

+2I=V

c

⇒V

a

=12−2(2)=8V

∴V

a

=V

b

=8 V

Now with knowing V_a,V_bV

a

,V

b

 and V_cV

c

, we can find the potential drop across the capacitors and subsequently the charges.

\begin{align*}{Q'_3}&=C_3\left|V_{bc}\right|\\&=C_3\left|V_c-V_b\right|\\&=3\times (12-8)\\&=12\quad{\rm \mu C} \\\\ {Q'_6}&=C_6\left|V_{bd}\right|\\&=C_6\left|V_b-V_d\right|\\&=6\times (8-0)\\&=48\quad {\rm V}\end{align*}

Q

3

Q

6

 

=C

3

∣V

bc

=C

3

∣V

c

−V

b

=3×(12−8)

=12μC

=C

6

∣V

bd

=C

6

∣V

b

−V

d

=6×(8−0)

=48V

Therefore, we get

\begin{align*} \Delta Q_3&={Q'_3}-Q_3\\&=12-24\\&=-12\quad {\rm \mu C} \\\\ Q_6&={Q'_6}-Q_6\\&=48-24\\&=24\quad {\rm \mu C}\end{align*}

ΔQ

3

Q

6

 

=Q

3

−Q

3

=12−24

=−12μC

=Q

6

−Q

6

=48−24

=24μC

Attachments:
Similar questions