Physics, asked by gujjar4238, 10 months ago

Electric potential in a particular region of space is V=12x-3x^(2)y+2yz^(2) .The electric field at point P(1m 0 -2m) is : 1) 12 unit 213 unit 35 unit 4) zero​

Answers

Answered by nirman95
12

Given:

V = 12x - 3x²y + 2yz²

To find:

Electrostatic field intensity at (1, 0, 2) metres?

Calculation:

 \therefore \: E_{x}  = -  \dfrac{ \partial V}{ \partial x}

 \implies \: E_{x}  = -  \dfrac{ \partial (12x - 3 {x}^{2}y + 2 {y}^{2}z)  }{ \partial x}

 \implies\: E_{x}  = - 12 + 6xy + 0

 \implies\: E_{x} \bigg|_{x = 1}   = - 12 + 6(1)(0)+ 0

 \implies\: E_{x}  = - 12  \: N/C

_______________

 \therefore \: E_{y}  = -  \dfrac{ \partial V}{ \partial y}

 \implies \: E_{y}  = -  \dfrac{ \partial (12x - 3 {x}^{2}y + 2 {y}^{2}z)  }{ \partial y}

 \implies \: E_{y}  =3 {x}^{2}  - 2 {z}^{2}

 \implies \: E_{y}  =3 {(1)}^{2}  - 2 {(2)}^{2}

 \implies \: E_{y}  =3 - 8

 \implies \: E_{y}  = - 5 \: N/C

_______________

 \therefore \: E_{z}  = -  \dfrac{ \partial V}{ \partial z}

 \implies \: E_{z}  = -  \dfrac{ \partial (12x - 3 {x}^{2}y + 2 {y}^{2}z)  }{ \partial z}

 \implies \: E_{z}  = - 2 {y}^{2}

 \implies \: E_{z}  = - 2 {(0)}^{2}

 \implies \: E_{z}  = 0 \: N/C

Net electrostatic field intensity:

 \therefore \: E_{net} =  \sqrt{ {( - 12)}^{2}  +  {( - 5)}^{2}  +  {(0)}^{2} }

 \implies \: E_{net} =  \sqrt{ {( - 12)}^{2}  +  {( - 5)}^{2}}

 \implies \: E_{net} =  \sqrt{169}

 \implies \: E_{net} =  13 \:  N/C

So, net field intensity is 13 N/C.

Similar questions