Physics, asked by solankilabdhi92, 9 months ago

electron is rotating in a circular orbit with radius 5.2 into 10 raise to minus 11 metre and with linear Speed 2 into 10 raise to 6 metre per second in a hydrogen atom around the proton find the magnetic field produced at the centre of the earth​

Answers

Answered by nirman95
5

Given:

Electron editing in a circular orbit with radius 5.2 × 10^(-11) m and linear velocity 2 × 10^(6) m/s in a hydrogen atom around a proton.

To find:

Magnetic Field produced at the centre of atom.

Calculation:

Applying Bio-Savart's Law:

B = \dfrac{ \mu_{0}}{4\pi}  \bigg \{ \dfrac{i \: dl}{ {r}^{2} }  \bigg \}

 =  > B = \dfrac{ \mu_{0}}{4\pi}  \bigg \{ \dfrac{( \frac{dq}{dt} ) \: dl}{ {r}^{2} }  \bigg \}

 =  > B = \dfrac{ \mu_{0}}{4\pi}  \bigg \{ \dfrac{dq \times ( \frac{dl}{dt} )}{ {r}^{2} }  \bigg \}

 =  > B = \dfrac{ \mu_{0}}{4\pi}  \bigg \{ \dfrac{dq \times v}{ {r}^{2} }  \bigg \}

Putting available values:

 =  > B = \dfrac{ \mu_{0}}{4\pi}  \bigg \{ \dfrac{(1.6 \times  {10}^{ - 19}  )\times( 2 \times  {10}^{6} )}{ {(5.2 \times  {10}^{ - 11}) }^{2} }  \bigg \}

 =  > B = \dfrac{ \mu_{0}}{4\pi}  \bigg \{ \dfrac{3.2 \times  {10}^{ - 13}  }{ 27.04\times  {10}^{ - 22} }  \bigg \}

 =  > B = \dfrac{ \mu_{0}}{4\pi}  \bigg \{ 0.132 \times  {10}^{9} \bigg \}

 =  > B = \dfrac{ \mu_{0}}{4\pi}  \bigg \{ 13.2 \times  {10}^{7} \bigg \}

 =  > B =  {10}^{ - 7}   \times \bigg \{ 13.2 \times  {10}^{7} \bigg \}

 =  > B =  13.2 \: tesla

So, final answer is:

 \boxed{ \bold{ \large{ \red{ B =  13.2 \: tesla}}}}

Similar questions