Physics, asked by StrongGirl, 10 months ago

Electron, proton, and HE^{++} are moving with the same KE.T hen order of de-Broglie wavelengths are?

Attachments:

Answers

Answered by amansharma264
8

ANSWER.

The order of de - Broglie wavelength are

 \sf \to \:   \lambda_{e} >  \lambda_{p} >    \lambda_{he} {}^{ +  + }

option [ D ] is correct answer.

EXPLANATION.

 \sf \to \: electron \:  \: and \:  \: proton \:  \: and \:  \: neutron \:  moving \: with \: same \:  \: ke \\  \\  \sf \to \:  m_{e} = mass \: of \: electron \:  = 9.1 \times 10 {}^{ - 31}  \\  \\  \sf \to \:  m_{p} = mass \: of \: proton = 1.6  \times 10 {}^{ - 27}   \\  \\  \sf \to \:  m_{he} {}^{ +  + }  = mass \: of \: helium \:  = 4 \times 1.6 \times 10 {}^{ - 27}

 \sf \to \: as \: we \: know \: that \\  \\  \sf \to \:  \lambda \:  =  \frac{h}{mv}  \\  \\  \sf \to \:  \lambda \:  =  \frac{h}{  \sqrt{2mk}  }  \\  \\  \sf \to \:   \lambda_{e} =  \frac{1}{ \sqrt{ m_{e} } }  \\  \\  \sf \to \:    \lambda_{p} =  \frac{1}{ \sqrt{ m_{p} } } \\  \\  \sf \to \:   \lambda_{he} {}^{ +  + }    =  \frac{1}{ \sqrt{  m_{he} {}^{ +  + } } }

 \sf \to \: order \: of \: the \: wavelength \\  \\  \sf \to \:   \lambda_{e} \ratio \:   \lambda_{p} \ratio   \lambda_{he} {}^{ +  + }  =  \frac{1}{ \sqrt{ m_{e} } } \ratio \:  \frac{1}{ \sqrt{ m_{p} } } \ratio \:  \frac{1}{ \sqrt{ m_{he} {}^{ +  + } } }  \\  \\  \sf \to \:  \frac{1}{ \sqrt{9.1 \times 10 {}^{ - 31} } } \ratio \:  \frac{1}{ \sqrt{1.6 \times 10 {}^{ - 27}} }  \ratio \:  \frac{1}{ \sqrt{4 \times 1.6 \times 10 {}^{ - 27} } }   \\  \\  \sf \to \:  \lambda_{e} \ratio \:   \lambda_{p} \ratio   \lambda_{he} {}^{ +  + }   \approx \: 84 \ratio \: 2 \ratio \: 1  \\  \\  \sf \to \:    \lambda_{e} >   \lambda_{p} >   \lambda_{he} {}^{ +  + }

Similar questions