Math, asked by senthurkumaran2004, 11 months ago

eleminate a from the following
x = cot a + tan a;
y = sec a - cos a​

Answers

Answered by Sudhir1188
2

Answer:

\large{\boxed{\sf{\red{hope \: this \: will \: help \: you}}}} >

PLEASE FIND THE ATTACHMENT.

Attachments:
Answered by umiko28
1

Answer:

\huge\underline{ \underline{ \red {your  \:  \:  \: answer}}}

Step-by-step explanation:

 \bf\red{ \mapsto \:x = cot \: a + tan \: a }  \\  \\  \bf\red{ \mapsto \: x =  \frac{cos \: a}{sin \: a} +  \frac{sin \: a}{cos \: a}  } \\  \\  \bf\red{ \mapsto \:x =  \frac{ {cos}^{2}a +  {sin}^{2}a  }{sin \: a \: cos \: a}  } \\  \\  \bf\red{ \mapsto \: x =  \frac{1}{sin \: a \: cos \: a} } \\  \\  \bf\purple{ \mapsto \: y = sec \: a - cos \: a} \\  \\  \bf\purple{ \mapsto \:y =  \frac{1}{cos \: a} -cos \: a   } \\  \\  \bf\purple{ \mapsto \:y =  \frac{1 -  {cos}^{2}a }{cos \: a}  } \\  \\ \bf\purple{ \mapsto \: y =  \frac{ {sin}^{2}a }{cos \: a} } \\  \\ \bf\pink{ \mapsto \:  {x}^{2}y =  \frac{1}{ {sin}^{2}a  {cos}^{2}a    }   \times  \frac{ {sin}^{2}a}{cos \: a} =  \frac{1}{ {cos}^{3} } } \\  \\ \bf\pink{ \mapsto \: \frac{x}{y}  =  \frac{1}{sin \: a \: cos \: a}   \times  \frac{cos \: a}{ {sin}^{2}a } } \\  \\ \bf\pink{  \implies \:  \frac{1}{{sin}^{3}a } } \\  \\ \bf\pink{ \mapsto \:  {cos}^{3} =  {x}^{2}y \implies {cos}^{2}a =  ({{x}^{2}y}){^ \frac{1}{3} }} \\  \\ \bf\pink{ \mapsto \:  {sin}^{3} a =  \frac{y}{x}  \implies \: sin \: a =  (\frac{y}{x})^{ \frac{1}{3} }  } \\  \\ \bf\pink{ \mapsto \:  {sin}^{2} a +  { cos}^{2} a = 1} \\  \\ \bf\pink{ \mapsto \:( {x}^{2}y) ^{ \frac{2}{3}} +(\frac{y}{x} )^{ \frac{2}{3} }  = 1  } \\  \\ \large\boxed{ \fcolorbox{red}{pink}{hope \: it \: help \: you}}

Similar questions