Math, asked by dharini234, 2 months ago

Eliminate θ between the equations: cos θ + sin θ = m and sec θ + cosec θ = n.​

Answers

Answered by mathdude500
1

Given Question :-

Eliminate θ between the equations:

  • cos θ + sin θ = m and sec θ + cosec θ = n.

ANSWER

GIVEN :-

  • cos θ + sin θ = m

  • sec θ + cosec θ = n.

TO ELIMINATE :-

  • Eliminate θ

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

(1). \:  \boxed{ \bf \:  {(x + y)}^{2} =  {x}^{2}   + 2xy +  {y}^{2} }

(2). \:  \boxed{ \bf \:  {sin}^{2} x +  {cos}^{2} x = 1}

(3). \:  \boxed{ \bf \: cosecx = \dfrac{1}{sinx} }

(4). \:  \boxed{ \bf \:secx = \dfrac{1}{cosx}  }

\large\underline{\bold{Solution-}}

Consider,

\rm :\longmapsto\:cosec\theta \: + sec\theta \: = n

\rm :\longmapsto\:\dfrac{1}{sin\theta \:}  + \dfrac{1}{cos\theta \:}  = n

\rm :\longmapsto\:\dfrac{cos\theta \: + sin\theta \:}{sin\theta \:cos\theta \:}  = n

\rm :\implies\:\dfrac{m}{sin\theta \:cos\theta \:}  = n \: \:  \:  \:  \:   \: ( \because \: sin\theta \: + cos\theta \: = m)

\bf\implies \:sin\theta \:cos\theta \: = \dfrac{m}{n}  -  -  -  - (1)

Now,

  • It is given that

\rm :\longmapsto\:sin\theta \: + cos\theta \: = m

  • On squaring both sides, we get

\rm :\longmapsto\: {sin}^{2} \theta \: +  {cos}^{2} \theta \: + 2sin\theta \:cos\theta \: =  {m}^{2}

\rm :\implies\:1 + 2 \times \dfrac{m}{n}  =  {m}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( {\because} \: of \: (1))

\bf\implies \:2m = n( {m}^{2}  - 1)

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions