Math, asked by nasri5621, 1 year ago

Eliminate θ from the equations a sec θ − c tan θ = b and bsec θ + d tan θ = c.

Answers

Answered by MaheswariS
8

Answer:

(c^2+bd)^2-(b^2-ac)^2=(ad+bc)^2

Step-by-step explanation:

Given equations are

a\:sec\theta-c\:tan\theta-b=0

b\:sec\theta+d\:tan\theta-c=0

By cross multiplication rule

\frac{sec\theta}{c^2+bd}=\frac{tan\theta}{-b^2+ac}=\frac{1}{ad+bc}

\implies\:\frac{sec\theta}{c^2+bd}=\frac{1}{ad+bc}

\implies\:sec\theta=\frac{c^2+bd}{ad+bc}

and

\frac{tan\theta}{-b^2+ac}=\frac{1}{ad+bc}

tan\theta=\frac{-b^2+ac}{ad+bc}

we know that

\boxed{sec^2\theta-tan^2\theta=1}

\implies\:(\frac{c^2+bd}{ad+bc})^2-(\frac{-b^2+ac}{ad+bc})^2=1

\implies\:\frac{(c^2+bd)^2}{(ad+bc)^2}-\frac{(-b^2+ac)^2}{(ad+bc)^2}=1

\implies\:(c^2+bd)^2-(-b^2+ac)^2=(ad+bc)^2

\implies\:\boxed{(c^2+bd)^2-(b^2-ac)^2=(ad+bc)^2}

Similar questions