Eliminate θ from the following. a=sinθ+cosθ,b=sin 3 θ+cos 3 θ
Answers
Answered by
20
Answer:
a=SIN θ+ COS θ -----------------— eq (1)
b=SIN³ θ+ COS³ θ ------------------- eq( 2)
b =(SIN θ+ COS θ) (SIN²θ – SIN θ COS θ + COS² θ)
=> (a) ( 1– SIN θ COS θ)
a²=(SIN θ=COS θ)²
a²=1+2SIN θ COS θ
(OR) SIN θ COS θ =1-a²/2
PUTTING THE VALUE OF SIN θ COS θ IN EQUATION ii
b=(a) (1–(1– a²/ 2))
=a [2–1+a²/2]
b=( a) [ 1+ a²/2]
Answered by
24
here is ur answer mate:------------------------------------------------------
a=sinθ+cosθ........eq (1)
b=sin³θ+cos³θ........eq (2)
b =>(sinθ+cosθ)(sin²θ-sinθcosθ+cos²θ)
=> A(1-sinθcosθ)
a²=(sinθ=cosθ)²
a²=1+2sinθcosθ
(or)
sinθcosθ=1-a²/2
putting the value of sinθcosθ in equation.....(2)
b=a[1-(1-a²/2)]
=a[2-1+a²/2]
=a[1+a²/2]
I hope this helps u
have a nice day✌☘
Similar questions