Math, asked by nk9296654, 18 days ago

Eliminate θ If 2x= 3- 4cotθ, 3y = 5+ 3cosecθ​

Answers

Answered by tennetiraj86
3

Given :-

2x = 3 - 4 cot θ

3y = 5 + 3 cosec θ

To find :-

Eliminate θ

Solution :-

Given equations are :

2x = 3 - 4 cot θ ---------(1)

=> 2x-3 = -4 cot θ

=> (2x-3)/-4 = cot θ

=> cot θ = -(2x-3)/4

On squaring both sides then

=> (cot θ)² = [-(2x-3)/4]²

=> cot² θ = [(2x)²-2(2x)(3)+3²]/16

Since, (a-b)² = -2ab+

Where, a = 2x and b = 3

=> cot² θ = (4x²-12x+9)/16 ---------------(2)

3y = 5 + 3 cosec θ --------(3)

=> 3y-5 = 3 cosec θ

=> (3y-5)/3 = cosec θ

=> cosec θ = (3y-5)/3

On squaring both sides then

=> (cosec θ)² = [(3y-5)/3]²

=> cosec² θ = [(3y)²-2(3y)(5)+5²]/9

Since, (a-b)² = a²-2ab+b²

Where, a = 3y and b = 5

=> cosec² θ = (9y²-30y+25)/9 -----------(4)

On subtracting (2) from (4) then

cosec² θ-cot² θ

= [(9y²-30y+25)/9]-[(4x²-12x+9)/16]

We know that

cosec² A - cot² A = 1

Therefore,

1 = [(9y²-30y+25)/9]-[(4x²-12x+9)/16]

=> [(9y²-30y+25)/9]-[(4x²-12x+9)/16] = 1

LCM of 9 and 16 = 144

[16(9y²-30y+25)-9(4x²-12x+9)] /144 = 1

=> [16(9y²-30y+25)-9(4x²-12x+9)] = 1×144

=> [16(9y²-30y+25)-9(4x²-12x+9)] = 144

=> (144y²-480y+400)-(36x²-108x+81) = 144

=> 144y²-480y+400-36x²+108x-81 = 144

=> 144y²-36x²-480y+108x+319 = 144

=> 144y²-36x²-480y+108x +319-144 = 0

=> 144y²-36x²-480y+108x+175 = 0

or

=> -36x²+108x-480y+144y²+175 = 0

=> 36x²-108x+480y-144y²-175 = 0

Answer :-

The answer for the given problem after eliminating θ is 144y²-36x²-480y+108x+175 =0 (or)

36x²-108x+480y-144y²-175 = 0

Used formulae:-

(a-b)² = a²-2ab+b²

cosec² A - cot² A = 1

Answered by krohit68654321
0

Step-by-step explanation:

Given :-

2x = 3 - 4 cot θ

3y = 5 + 3 cosec θ

To find :-

Eliminate θ

Solution :-

Given equations are :

2x = 3 - 4 cot θ ---------(1)

=> 2x-3 = -4 cot θ

=> (2x-3)/-4 = cot θ

=> cot θ = -(2x-3)/4

On squaring both sides then

=> (cot θ)² = [-(2x-3)/4]²

=> cot² θ = [(2x)²-2(2x)(3)+3²]/16

Since, (a-b)² = a²-2ab+b²

Where, a = 2x and b = 3

=> cot² θ = (4x²-12x+9)/16 ---------------(2)

3y = 5 + 3 cosec θ --------(3)

=> 3y-5 = 3 cosec θ

=> (3y-5)/3 = cosec θ

=> cosec θ = (3y-5)/3

On squaring both sides then

=> (cosec θ)² = [(3y-5)/3]²

=> cosec² θ = [(3y)²-2(3y)(5)+5²]/9

Since, (a-b)² = a²-2ab+b²

Where, a = 3y and b = 5

=> cosec² θ = (9y²-30y+25)/9 -----------(4)

On subtracting (2) from (4) then

cosec² θ-cot² θ

= [(9y²-30y+25)/9]-[(4x²-12x+9)/16]

We know that

cosec² A - cot² A = 1

Therefore,

1 = [(9y²-30y+25)/9]-[(4x²-12x+9)/16]

=> [(9y²-30y+25)/9]-[(4x²-12x+9)/16] = 1

LCM of 9 and 16 = 144

[16(9y²-30y+25)-9(4x²-12x+9)] /144 = 1

=> [16(9y²-30y+25)-9(4x²-12x+9)] = 1×144

=> [16(9y²-30y+25)-9(4x²-12x+9)] = 144

=> (144y²-480y+400)-(36x²-108x+81) = 144

=> 144y²-480y+400-36x²+108x-81 = 144

=> 144y²-36x²-480y+108x+319 = 144

=> 144y²-36x²-480y+108x +319-144 = 0

=> 144y²-36x²-480y+108x+175 = 0

or

=> -36x²+108x-480y+144y²+175 = 0

=> 36x²-108x+480y-144y²-175 = 0

answer}

Similar questions