Math, asked by chowdhurymahima32, 2 months ago

Eliminate t between a cosec t + b cot t= x , a cot t + b cosec t = y​​

Answers

Answered by suhail2070
5

Answer:

{a}^{2}  -  {b}^{2}  =  {x}^{2}  -  {y}^{2}

Step-by-step explanation:

a  \csc(t)  + b \cot(t)  = x \\  \\ a \cot(t)  + b \csc(t)  = y \\  \\ a \csc(t)  \cot(t)  + b { \cot(t) }^{2}  = x \cot(t)  \\  \\ a \csc(t)  \cot(t)  + b { \csc(t) }^{2}  = y  \csc(t)  \\  \\  \\  \\ solving \: these \: equations \\  \\  \\ b( { \csc(t) }^{2}  -  { \cot(t) }^{2} ) = ( y\csc(t)  - x \cot(t) ) \\  \\b  = ( y\csc(t)  - x \cot(t) ) \\  \\  \\  \\  \\ a  \csc(t)  + b \cot(t)  = x \\  \\ a \cot(t)  + b \csc(t)  = y \\  \\  \\ squaring \: and \: subtracting \\  \\  {(a \csc(t)) }^{2}  +  {(b \cot(t)) }^{2}  - {(a \cot(t)) }^{2}  +  {(b \csc(t)) }^{2} =  {x}^{2}  -  {y}^{2}  \\  \\  {a}^{2}  -  {b}^{2}  =  {x}^{2}  -  {y}^{2}

Similar questions