Math, asked by shabanakhatoon089, 9 months ago

Eliminate the arbitrary constants and form corresponding partial differential equation Z=ax^2 + bxy + cy^2​

Answers

Answered by Swarup1998
23

Partial Differential Equation

Given: \mathrm{z=ax^{2}+by^{2}+cy^{2}}

To find:

  • eliminate the arbitrary constants
  • form corresponding partial differential equation

Solution:

Given \mathrm{z=ax^{2}+bxy+cy^{2}} .....(1)

____________________________

  • Differentiating \mathrm{z} with respect to \mathrm{x}, we get

  • \mathrm{\frac{\partial z}{\partial x}=2ax+by}

____________________________

  • Differentiating \mathrm{z} with respect to \mathrm{y}, we get

  • \mathrm{\frac{\partial z}{\partial y}=bx+2cy}

____________________________

  • Again differentiating \mathrm{\frac{\partial z}{\partial x}} with respect to \mathrm{x}, we get

  • \mathrm{\frac{\partial ^{2}z}{\partial x^{2}}=2a}

  • \mathrm{\Rightarrow a=\frac{1}{2}\frac{\partial ^{2}z}{\partial x^{2}}}

____________________________

  • Now differentiating \mathrm{\frac{\partial z}{\partial x}} with respect to \mathrm{y} and same for \mathrm{\frac{\partial z}{\partial y}} with respect to \mathrm{x}, in both cases, we get

  • \mathrm{\frac{\partial ^{2}z}{\partial x\partial y}=\frac{\partial ^{2}z}{\partial y\partial x}=b}

  • \mathrm{\Rightarrow b=\frac{\partial ^{2}z}{\partial x\partial y}}

____________________________

  • Also differentiating \mathrm{\frac{\partial z}{\partial y}} with respect to \mathrm{y}, we get

  • \mathrm{\frac{\partial ^{2}z}{\partial y^{2}}=2c}

  • \Rightarrow \mathrm{c=\frac{1}{2}\frac{\partial ^{2}z}{\partial y^{2}}}

____________________________

We have found:

  • \mathrm{a=\frac{1}{2}\frac{\partial ^{2}z}{\partial x^{2}}}

  • \mathrm{b=\frac{\partial ^{2}z}{\partial x\partial y}}

  • \mathrm{c=\frac{1}{2}\frac{\partial ^{2}z}{\partial y^{2}}}

____________________________

Substituting the values of the arbitrary constants \mathrm{a}, \mathrm{b} and \mathrm{c} in (1), we get

  • \mathrm{z=\frac{1}{2}\frac{\partial ^{2}z}{\partial x^{2}}x^{2}+\frac{\partial ^{2}z}{\partial x\partial y}xy+\frac{1}{2}\frac{\partial ^{2}z}{\partial y^{2}}y^{2}}

This is the required partial differential equation.

Similar questions