Eliminate theath from the following: x=4cos theta-5 sin theta, y=4 sin theta +5 cos theta
Attachments:
Answers
Answered by
38
Answer:
x² + y² = 41
Step-by-step explanation:
Since we are given that
x =4cos(∅) - 5sin(∅) ......(1)
y = 4sin(∅) + 5cos(∅) .....(2)
Taking square on both sides of the equation (1)
x² = 16cos²(∅) + 25sin²(∅) - 2(cos(∅)sin(∅) .....(3)
Taking square on the both sides of equation (2)
y² = 16sin²(∅) + 25cos²(∅) + 2(cos(∅)sin(∅) ......(4)
Adding equation (1) and equation (2)
x² + y² = 16cos²(∅) + 25sin²(∅) - 2(cos(∅)sin(∅) + 16sin²(∅) + 25cos²(∅) + 2(cos(∅)sin(∅)
x² + y² = 16(cos²(∅ + sin²(∅)) + 25((cos²(∅ + sin²(∅))
x² + y² = 16(1) + 25(1) ∵ cos²(∅ + sin²(∅) = 1
x² + y² = 16 + 25 = 41
Thus after elimination of theta we get
x² + y² = 41
Similar questions
Computer Science,
6 months ago
Math,
1 year ago
Math,
1 year ago
Hindi,
1 year ago
Hindi,
1 year ago