Eliminate theta between the equations:
q tan θ + p sec θ = x, p tan θ + q sec θ = y
Answers
Squaring both sides of q tan θ + p sec θ = x we get,
(q tan θ + p sec θ)2 = x2 , …………….. (A)
Now, squaring both sides of p tan θ + q sec θ = y we get,
(p tan θ + q sec θ)2 = y2, …………….. (B)
Now subtract (B) from (A) we get,
x2 - y2 = (q tan θ + p sec θ)2 - (p tan θ + q sec θ) 2
⇒ x2 - y2 = (q2 tan2 θ + p2 sec2 θ + 2qp tan θ sec θ) - (p2 tan2 θ + q2 sec2 θ + 2pq tan θ sec θ)
⇒ x2 - y2 = q2 tan2 θ + p2 sec2 θ + 2qp tan θ sec θ - p2 tan2 θ - q2 sec2 θ - 2pq tan θ sec θ
⇒ x2 - y2 = q2 tan2 θ - p2 tan2 θ + p2 sec2 θ - q2 sec2 θ
⇒ x2 - y2 = tan2 θ (q2 – p2) + sec 2 θ (p2 - q2)
⇒ x2 - y2 = - tan2 θ (p2 - q2) + sec 2 θ (p2 - q2) ⇒ x2 - y2 = sec2 θ (p2 - q2) - tan2 θ (p2 - q2)
⇒ x2 - y2 = (p2 – q2) (sec2 θ - tan2 θ)
⇒ x2 - y2 = (p2 – q2)(1), [Since sec 2 θ - tan2 θ = 1]
⇒ x2 - y2 = p2 – q2
Hence the required aliment is x2 - y2 = p2 - q2.
Answer:
Solution
Squaring both sides of q tan θ + p sec θ = x we get,
(q tan θ + p sec θ)2 = x2 , …………….. (A)
Now, squaring both sides of p tan θ + q sec θ = y we get,
(p tan θ + q sec θ)2 = y2, …………….. (B)
Now subtract (B) from (A) we get,
x2 - y2 = (q tan θ + p sec θ)2 - (p tan θ + q sec θ) 2
⇒ x2 - y2 = (q2 tan2 θ + p2 sec2 θ + 2qp tan θ sec θ) - (p2 tan2 θ + q2 sec2 θ + 2pq tan θ sec θ)
⇒ x2 - y2 = q2 tan2 θ + p2 sec2 θ + 2qp tan θ sec θ - p2 tan2 θ - q2 sec2 θ - 2pq tan θ sec θ
⇒ x2 - y2 = q2 tan2 θ - p2 tan2 θ + p2 sec2 θ - q2 sec2 θ
⇒ x2 - y2 = tan2 θ (q2 – p2) + sec 2 θ (p2 - q2)
⇒ x2 - y2 = - tan2 θ (p2 - q2) + sec 2 θ (p2 - q2) ⇒ x2 - y2 = sec2 θ (p2 - q2) - tan2 θ (p2 - q2)
⇒ x2 - y2 = (p2 – q2) (sec2 θ - tan2 θ)
⇒ x2 - y2 = (p2 – q2)(1), [Since sec 2 θ - tan2 θ = 1]
⇒ x2 - y2 = p2 – q2
Hence the required aliment is x2 - y2 = p2 - q2.Solution
Squaring both sides of q tan θ + p sec θ = x we get,
(q tan θ + p sec θ)2 = x2 , …………….. (A)
Now, squaring both sides of p tan θ + q sec θ = y we get,
(p tan θ + q sec θ)2 = y2, …………….. (B)
Now subtract (B) from (A) we get,
x2 - y2 = (q tan θ + p sec θ)2 - (p tan θ + q sec θ) 2
⇒ x2 - y2 = (q2 tan2 θ + p2 sec2 θ + 2qp tan θ sec θ) - (p2 tan2 θ + q2 sec2 θ + 2pq tan θ sec θ)
⇒ x2 - y2 = q2 tan2 θ + p2 sec2 θ + 2qp tan θ sec θ - p2 tan2 θ - q2 sec2 θ - 2pq tan θ sec θ
⇒ x2 - y2 = q2 tan2 θ - p2 tan2 θ + p2 sec2 θ - q2 sec2 θ
⇒ x2 - y2 = tan2 θ (q2 – p2) + sec 2 θ (p2 - q2)
⇒ x2 - y2 = - tan2 θ (p2 - q2) + sec 2 θ (p2 - q2) ⇒ x2 - y2 = sec2 θ (p2 - q2) - tan2 θ (p2 - q2)
⇒ x2 - y2 = (p2 – q2) (sec2 θ - tan2 θ)
⇒ x2 - y2 = (p2 – q2)(1), [Since sec 2 θ - tan2 θ = 1]
⇒ x2 - y2 = p2 – q2
Hence the required aliment is x2 - y2 = p2 - q2.
Step-by-step explanation: