eliminate theta if tan( theta -alpha) =a and tan (theta alpha)=b
Answers
Answer:
Tan2α = a + b
Step-by-step explanation:
eliminate theta if tan( theta -alpha) =a and tan (theta alpha)=b
Tan(θ - α) = a
Tan(θ + α) = b
Using Tan(x + y) = (Tanx + Tany)/(1 - TanxTany)
Tan(x - y) = (Tanx - Tany)/(1 + TanxTany)
Tan(θ - α) = (Tanθ - Tanα)/(1 + TanθTanα) = a
=> Tanθ - Tanα = a + aTanθTanα
=> Tanθ(1 + aTanα) = a + Tanα
=> Tanθ = (a + Tanα)/(1 + aTanα)
Tan(θ + α) = (Tanθ + Tanα)/(1 - TanθTanα) = b
=> Tanθ + Tanα = b - bTanθTanα
=> Tanθ(1 + b Tanα) = b - Tanα
=> Tanθ = (b - Tanα)/(1 + bTanα)
Equating Tanθ
(a + Tanα)/(1 + aTanα) = (b - Tanα)/(1 + bTanα)
=> (a + Tanα)(1 + bTanα) = (1 + aTanα) (b - Tanα)
=> a + Tanα + abTanα + bTan²α = b - Tanα + abTanα - aTan²α
=> 2Tanα + (a + b)Tan²α = (b + a)
=> 2 Tanα = (b+a)( 1 - Tan²α)
=> b + a = 2 Tanα/ ( 1 - Tan²α)
=> b + a = (Tan α + Tanα)/(1 - TanαTanα)
=> b + a = Tan(α + α)
=> b + a = Tan(2α)
Tan2α = a + b
Step-by-step explanation:
Kindly refer to the attachments.
Hope it helps.