Math, asked by veena35, 1 year ago

eliminate theta if x=acot theta+b cosec theta, y=a cosec theta+b cot theta ​

Answers

Answered by MaheswariS
1

\textbf{Given:}

x=a\,cot\theta+b\,cosec\theta...(1)

y=a\,cosec\theta+b\,cot\theta...(2)

(1)^2-(2)^2\implies

x^2-y^2=(a\,cot\theta+b\,cosec\theta)^2-(a\,cosec\theta+b\,cot\theta)^2

x^2-y^2=(a^2cot^2\theta+b^2cosec^2\theta+2\,ab\,cot\theta\,cosec\theta)-(a^2cosec^2\theta+b^2cot^2\theta+2\,ab\,cot\theta\,cosec\theta)

x^2-y^2=a^2cot^2\theta+b^2cosec^2\theta+2\,ab\,cot\theta\,cosec\theta-a^2cosec^2\theta-b^2cot^2\theta-2\,ab\,cot\theta\,cosec\theta

x^2-y^2=a^2cot^2\theta+b^2cosec^2\theta-a^2cosec^2\theta-b^2cot^2\theta

x^2-y^2=a^2(cot^2\theta-cosec^2\theta)+b^2(cosec^2\theta-cot^2\theta)

x^2-y^2=-a^2(cosec^2\theta-cot^2\theta)+b^2(cosec^2\theta-cot^2\theta)

\text{Using}

\bf\,cosec^2A-cot^2A=1

\implies\,x^2-y^2=-a^2(1)+b^2(1)

\implies\,x^2-y^2=-(a^2-b^2)

\implies\boxed{\bf\,x^2-y^2+(a^2-b^2)=0}

Answered by Srijan456
1

This is question 2 from Ex-22B from RS AGGARWAL (ICSE)

Hope it helps ;)

Attachments:
Similar questions