Math, asked by aljorajan9505, 1 year ago

Eliminate theta
X=3sec ^,y=4tan^

Answers

Answered by MaheswariS
9

Answer:

\bf\frac{x^2}{9}-\frac{y^2}{16}=1

Step-by-step explanation:

Given:

x=3\:sec\theta and

y=4\:tan\theta

\implies\:\frac{x}{3}=sec\theta\:\text{and}\:\frac{y}{4}=tan\theta

we know that

\boxed{sec^2\theta-tan^2\theta=1}

\implies\:(\frac{x}{3})^2-(\frac{y}{4})^2=1

\implies\:\bf\frac{x^2}{9}-\frac{y^2}{16}=1

Answered by prathamwankhade876
1

Answer :

16 {x}^{2}  - 9 {y}^{2}  = 1

Step by step Explanation :

x = 3 \sec\theta  \: and \: 9 \tan\theta

 \therefore \frac{x}{3}  =  \sec \theta \: and \:  \frac{y}{9}  =  \tan \theta

On squaring and subtracting on both sides,

 \frac{ {x}^{2} }{3 ^{2} } -  \frac{ {y}^{2} }{ {4}^{2} }  =  \sec^{2}\theta -  \tan^{2} \theta

 \frac{ {x}^{2} }{9}   -  \frac{ {y}^{2} }{16 }  =  \sec^{2} \theta -  \tan^{2}  \theta

but \:  \sec^{2} -  { \tan}^{2}  = 1

 \frac{ {x}^{2} }{9}  -  \frac{ {y}^{2} }{16}  = 1

Now the final Answer will be,

16 {x}^{2}  - 9 {y}^{2}  = 1

Similar questions