eliminate thitha if x= 2cos thitha - 3sin thitha and y= cos thitha + 2sin thitha
Answers
Answered by
0
Answer :
5x² + 13y² + 8xy = 49
Step-by-step Explanation:
Given that,
x = 2 cosθ - 3 sinθ ---------------- (i) and
y = cosθ + 2 sinθ
⇒ 2y = 2 cosθ + 4 sinθ ---------------- (ii)
Now, (ii) - (i) ⇒
2y - x = 2 cosθ + 4 sinθ - 2 cosθ + 3 sinθ
⇒ 2y - x = 7 sinθ ---------------- (iii)
Again, (ii) × 7 ⇒
7y = 7 cosθ + 2 (7 sinθ)
⇒ 7y = 7 cosθ + 2 (2y - x) , by (iii)
⇒ 7 cosθ = 3y + 2x ---------------- (iv)
Finally, we have
cosθ =
sinθ =
We know that,
sin²θ + cos²θ = 1
⇒ = 1
⇒ = 1
⇒ = 1
⇒ 5x² + 13y² + 8xy = 49
equation arrived without θ
Answered by
0
Hope this helps you.
Thank you.
Mark it as brainliest....
Attachments:
Similar questions