Math, asked by riyachauhan1q, 4 months ago

Eliminate x and y by coefficient method::
8^x × 4^y = 32
81^x ÷ 27^y = 3​

Answers

Answered by mathdude500
11

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}(1)\:{\underline{\boxed{\bf{\blue{a^m\times{a^n}\:=\:a^{m\:+\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(2)\:{\underline{\boxed{\bf{\purple{\dfrac{a^m}{a^n}\:=\:a^{m\:-\:n}\:}}}}} \\ \end{gathered}

\begin{gathered}(3)\:{\underline{\boxed{\bf{\orange{\dfrac{1}{x^n}\:=\:x^{-n}\:}}}}} \\ \end{gathered}

\begin{gathered}(4)\:{\underline{\boxed{\bf{\color{peru}{(a^m)^n\:=\:a^{m\times{n}}\:}}}}} \\ \end{gathered}

\begin{gathered}(5)\:{\underline{\boxed{\bf{\red{ {x}^{0} = 1}}}}} \\ \end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\huge \orange{AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

☆ Let us consider the first equation :

\bf \:   {8}^{x}  \times  {4}^{y}  = 32

\sf \:  ⟼ {2}^{3x}  \times  {2}^{2y}  =  {2}^{5}

\sf \:  ⟼ {2}^{3x + 2y}  =  {2}^{5}

☆ On comparing, we get

\bf \:  ⟼ 3x + 2y = 5 \:  -  -  - (1)

─━─━─━─━─━─━─━─━─━─━─━─━─

☆ Let us consider the second equation :

\bf \:   {81}^{x}  \div  {27}^{y}  = 3

\sf \:  ⟼ {3}^{4x}  \div  {3}^{3y}  = 3

\sf \:  ⟼ {3}^{4x - 3y}  =  {3}^{1}

☆ On comparing, we get

\bf\implies \:4x - 3y = 1 \:  -  -  - (2)

─━─━─━─━─━─━─━─━─━─━─━─━─

Solving (1) and (2) equation to get x and y using method of eliminations

☆Multiply (1) by 3 and (2) by 2, we get

\bf \:  ⟼ 9x + 6y = 15 \:  -  -  - (3) \\ \bf \:  ⟼ 8x - 6y = 2 \:   \:  \: -  -  - (4)

☆On adding equation (3) and equation (4), we get

\bf\implies \:17x = 17

\bf\implies \:x = 1 \:  -  -  -  - (5)

☆ On substituting x = 1, in equation (2), we get

\bf \:  ⟼ 4 \times 1 - 3y = 1

\bf \:  ⟼ 4 - 3y = 1

\bf \:  ⟼  - 3y =  - 3

\bf\implies \:y = 1 \:  -  -  -  - (6)

─━─━─━─━─━─━─━─━─━─━─━─━─

 \large \boxed{\bf \: Hence,  \: the \:  solution \: is \: x = 1 \: and \: y = 1}

Answered by Mɪʀᴀᴄʟᴇʀʙ
171

\LARGE{\bf{\underline{\underline{Solution:-}}}}

{\sf{\underline{{We \ are \ given \ two \ equations:}}}}

  \sf{{8^{x}\times 4^{y} = 32}}

 \sf{{81^{x}\times 27^{y} = 3}}

 \sf{{8^{x}\times 4^{y} = 32}}

 \implies \sf{{ (2^{3})^{x}. (2^{2})^{y} =2^{5}}}

 \implies \sf{{2^{3x}.2^{2y} = 2^{5}}}

\implies \sf{{3x + 2y = 5}} \sf{{----- (1)}}

 \sf{{81^{x}\times 27^{y} = 3}}

 \implies \sf{{ (3^{4})^{x}\div (3^{3})^{y} = 3}}

\implies  \sf{{ 3^{4x}\div 3^{3y} = 3^{1}}}

 \implies \sf{{4x - 3y = 1}} \sf{{----(2)}}

{\sf{\underline{{Now \ let \  us \  eliminate \  y \ by \  using \  coefficient \  method:}}}}

 \sf{{12x + 8y = 20}}

 \sf{{12x - 9y = 3}}

 \sf{{-}}

 \sf{{--------}}

 \sf{{17y = 17}}

\implies  \sf{{y = 1}}

 \sf{{--------}}

{\sf{{{As \ we \ know \ y \ = \ 1, \ so \ x:}}}}

 \sf{{3x + 2y = 5}}

\implies \sf{{3x + 2(1) = 5}}

\implies \sf{{3x + 2 = 5}}

\implies \sf{{3x = 5 - 2}}

\implies \sf{{3x = 3}}

\implies \sf{{x = 1}}

{\sf{\underline{{Verification:-}}}}

 \sf{{8^{x}\times 4^{y} = 32}}

\implies \sf{{8^{1}\times 4^{1} = 32}}

\implies \sf{{8\times 4 = 32}}

\implies \sf{{32 = 32}}

\therefore \sf{{L.H.S=R.H.S}}

\LARGE{\bf{\underline{\underline{Required \ Answer :-}}}}

\sf{{x = 1}}

 \sf{{y = 1}}

Similar questions