Math, asked by ayushagrawal1310, 1 month ago

Eliminate 'x' in:
3secx - tanx = a
secx + 2tanx = b​

Answers

Answered by samithsanjay1234
0

Answer:

1+2tanx(tanx+secx)

=−logcosx+log(secx+tanx)+C

Step-by-step explanation:

Given:

We have,

\int\sqrt{1+2tanx(tanx+secx)}∫

1+2tanx(tanx+secx)

= \int\sqrt{1+2tan^2x+2tanxsecx}dx∫

1+2tan

2

x+2tanxsecx

dx

= \int \sqrt{1 +2\frac{sin^2x}{cos^2x}+2 \times\frac{sinx}{cosx} \times \frac{1}{cosx}} dx∫

1+2

cos

2

x

sin

2

x

+2×

cosx

sinx

×

cosx

1

dx [tanx=\frac{sinx}{cosx}, secx=\frac{1}{cosx} ][tanx=

cosx

sinx

,secx=

cosx

1

]

= \int \sqrt{1 +2\frac{sin^2x}{cos^2x}+2 \frac{sinx}{cos^2x}} dx∫

1+2

cos

2

x

sin

2

x

+2

cos

2

x

sinx

dx

= \int \sqrt{\frac{cos^2x+sin^2x+sin^2x+2sinx}{cos^2x} }dx∫

cos

2

x

cos

2

x+sin

2

x+sin

2

x+2sinx

dx

Using the trigonometric identity cos^2x+sin^2x=1cos

2

x+sin

2

x=1

= \int \sqrt{\frac{1+sin^2x+2sinx}{cos^2x} }dx∫

cos

2

x

1+sin

2

x+2sinx

dx

= \int \sqrt{\frac{sinx+1}{cos^2x} }dx∫

cos

2

x

sinx+1

dx [(sinx+1)^2=1+sin^2x+2sinx][(sinx+1)

2

=1+sin

2

x+2sinx]

= \int(\frac{sinx+1}{cosx})dx∫(

cosx

sinx+1

)dx

= \int \frac{sinx}{cosx}+ \frac{1}{cosx} dx∫

cosx

sinx

+

cosx

1

dx

= \int(tanx+secx)dx∫(tanx+secx)dx

= - log cosx +log (secx+tanx) + C

Therefore,

\int\sqrt{1+2tanx(tanx+secx)} = - log cosx +log (secx+tanx) + C∫

1+2tanx(tanx+secx)

=−logcosx+log(secx+tanx)+C

Answered by ramavathurajeevn
1

Answer:

3a^2-8b^2+10ab=49.

Step-by-step explanation:

3secx-tanx=a

sex+2tanx=b

6secx-2tanx=2a

sex+2tanx=b

add both equation

7secx=2a+b

3(2a+b)/7 - tanx=a

tanx =6a+3b/7 - a

tanx= 3b-a/7

we know that

sec^2x -tan^2x=1

(2a+b/7)^2-(3b-a/7)^2=1

on solving you will get

3a^2-8b^2+10ab=49.

Similar questions