Math, asked by dhananjay01sanap, 11 months ago

Eliminate z, if x=a cosec z
Y = b cot z​
and
ans

Answers

Answered by Zaransha
0

x = a \csc(z)  \\  \csc(z)   =  \frac{x}{a}
Squaring both sides,
 { \csc \: }^{2}z =  \frac{ {x}^{2} }{ {a}^{2} }
-----(i)

We have,
 y = b \cot(z)  \\  \cot(z)  =  \frac{y}{b}
Squaring both sides,

 { \cot }^{2} z =  \frac{ {y}^{2} }{ {b}^{2} }
------(ii)



Since we have the following relation,
1 +  { \cot}^{2}z  =  { \csc}^{2} z
Therefore,

subsituting (i) and (ii) here,

1 +  \frac{ {y}^{2} }{ {b}^{2} }  =  \frac{ {x}^{2} }{ {a}^{2} }
Solving it furthur,
1 =  \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} } \\  \frac{ {b}^{2} {x}^{2} -  {a}^{2}   {y}^{2}  }{ {a}^{2} {b}^{2}  }  = 1 \\  \\  {b}^{2}  {x}^{2}  -  {a}^{2}  {y}^{2}  =  {a}^{2}  {b}^{2}



Hence, Eliminated successfully.
Similar questions