Math, asked by mahaksrivastava2346, 6 months ago

ello ❤️
.
.
ANSWER BOTH QUESTION PLZ❤️❤️ ​

Attachments:

Answers

Answered by krishnan2451949
0

Answer:

1 ST ANSWER IS 1212

2 ND ANSWER IS 1341

MARK ME AS A BRAINLIST

Step-by-step explanation:

Answered by Anonymous
4

\bf{\underline{Questions}}

1. Simplify \sf{\dfrac{\sqrt{2}+\sqrt{3}}{2\sqrt{3}} + \dfrac{2-\sqrt{3}}{2+\sqrt{3}}}

2. Rationalise the denominator and evaluate \sf{\dfrac{\sqrt{2}}{2+\sqrt{2}}} by taking \sf{\sqrt{2}} = 1.414 upto three decimal places.

\bf{\underline{Solutions}}

1. \sf{\dfrac{\sqrt{2}+\sqrt{3}}{2\sqrt{3}} + \dfrac{2-\sqrt{3}}{2+\sqrt{3}}}

= \sf{\bigg(\dfrac{\sqrt{2} + \sqrt{3}}{2\sqrt{3}} \times \dfrac{\sqrt{3}}{\sqrt{3}}\bigg) + \bigg(\dfrac{2-\sqrt{3}}{2+\sqrt{3}}\times \dfrac{2-\sqrt{3}}{2-\sqrt{3}}\bigg)}

= \sf{\bigg[\dfrac{(2+\sqrt{3})\times\sqrt{3}}{2\sqrt{3}\times\sqrt{3}}\bigg] + \bigg[\dfrac{(2-\sqrt{3})^2}{(2)^2 - (\sqrt{3})^2}\bigg]}

= \sf{\dfrac{2\sqrt{3} + 3}{2\times3} + \bigg[\dfrac{(2)^2 - 2\times 2 \times\sqrt{3} + (\sqrt{3})^2}{4-3}\bigg]}

= \sf{\dfrac{2\sqrt{3} + 3}{6} + \bigg[\dfrac{4-4\sqrt{3} + 3}{1}\bigg]}

= \sf{\dfrac{2\sqrt{3} + 3}{6} + 7-4\sqrt{3}}

= \sf{\dfrac{2\sqrt{3} +3 + 42 - 24\sqrt{3}}{6}}

= \sf{\dfrac{-22\sqrt{3} + 45}{6}\:\:\boxed{\sf{Answer}}}

___________________________________

2. \sf{\dfrac{\sqrt{2}}{2+\sqrt{2}}}

= \sf{\dfrac{\sqrt{2}}{2+\sqrt{2}}\times\dfrac{2-\sqrt{2}}{2-\sqrt{2}}}

= \sf{\dfrac{\sqrt{2}(2-\sqrt{2})}{(2)^2-(\sqrt{2})^2}}

= \sf{\dfrac{2\sqrt{2}-2}{4-2}}

= \sf{\dfrac{2\sqrt{2}-2}{2}}

Taking 2 as common,

= \sf{\dfrac{2(\sqrt{2}-1)}{2}}

= \sf{\sqrt{2} - 1}

Taking \sf{\sqrt{2} = 1.414}

= \sf{1.414-1}

= \sf{0.414\:\:\boxed{\sf{Answer}}}

\bf{\underline{Formulas\:used}}

  • \sf{(a-b)^2 = a^2 - 2ab + b^2}

  • \sf{a^2 - b^2 = (a+b)(a-b)}
Similar questions