CBSE BOARD X, asked by mahek270597, 1 year ago

#ello bello every one

Plz help meh ​

Attachments:

Answers

Answered by presto
3

Answer:

\frac{1}{\sqrt{a_{1} }+\sqrt{a_{2} }  }  +\frac{1}{\sqrt{a_{2} }+\sqrt{a_{3} }  }+...\frac{1}{\sqrt{a_{n-1} }+\sqrt{a_{n} }  } = \frac{n-1}{\sqrt{a_{1} }+\sqrt{a_{n} }  }\\\\L.H.S\\\\\frac{1}{\sqrt{a_{1} }+\sqrt{a_{2} }  }  +\frac{1}{\sqrt{a_{2} }+\sqrt{a_{3} }  }+...\frac{1}{\sqrt{a_{n-1} }+\sqrt{a_{n} }  } \\

Rationalize denominator

\frac{\sqrt{a_{2}}-\sqrt{a_{1}}  }{a_{2}-a_{1}  } + \frac{\sqrt{a_{3}}-\sqrt{a_{2}}}{a_{3}-a_{2}  } +... +\frac{\sqrt{a_{n}}-\sqrt{a_{n-1}}}{a_{n}-a_{n-1}  }\\\\\frac{\sqrt{a_{2}}-\sqrt{a_{1}}  }{d  } + \frac{\sqrt{a_{3}}-\sqrt{a_{2}}}{d  } +... +\frac{\sqrt{a_{n}}-\sqrt{a_{n-1}}}{d  }\\\\\\\frac{\sqrt{a_{n}}-\sqrt{a_{1}}}{d}\\\\

multiply and divide by  \\\sqrt{a_{n}}+\sqrt{a_{1}}

\\\frac{(\sqrt{a_{n}}-\sqrt{a_{1}})(\sqrt{a_{n}}+\sqrt{a_{1}})}{d(\sqrt{a_{n}}+\sqrt{a_{1}})}\\\frac{a_{n}-a_{1}}{d(\sqrt{a_{n}}+\sqrt{a_{1}})}\\\\\frac{[ a_{1}+(n-1)d ]-a_{1}}{d(\sqrt{a_{n}}+\sqrt{a_{1}})}\\\\\frac{(n-1)d}{d(\sqrt{a_{n}}+\sqrt{a_{1}})}\\\\\frac{(n-1)}{(\sqrt{a_{n}}+\sqrt{a_{1}})}\\

L.H.S = R.H.S

Hence, proved.

MARK ME AS RAINLIEST(it took lot of time to type. despite that I gave you an answer)!! GOOD LUCK :))

Similar questions