Math, asked by aliasharma93, 1 year ago

✨Ello ! ! Mates...❤


↪Help me in this question⭐

No useless answers plz❌​

Attachments:

Answers

Answered by Anonymous
1

ANSWER:-

Given:

In the figure, given above attachment,

ABC is an isosceles ∆ with BC= 8cm & AB= AC= 5cm.

To find:

⚫sinB

⚫tanC

⚫sin²B+ cos²B

⚫tanC - cotB

Solution:

Here,

AB= BC = 5cm & we draw an altitude AD as we know that isosceles ∆ altitude also a median for not equal side of isosceles ∆.

So,

Given:BC= 8cm

BD= CD= 4cm

Using Pythagoras Theorem:

(Hypotenuse)²=(base)²+(perpendicular)²

In ∆ABD,

=) AB² = AD² + BD²

=) 5² = AD² + 4²

=) 25= AD² + 16

=) AD²= 25 - 16

=) AD² = 9

=) AD = √9

=) AD= 3cm

Sin theta:

 =  >  \frac{Perpendicular}{Hypotenuse}

So,

sinB=  \frac{AD}{AB}  \\  \\  =  > sinB =  \frac{3}{5}

tan theta:

 =  >  \frac{Perpendicular}{Base}

So,

 =  > tanC =  \frac{AD}{CD}  \\  \\  =  > tanC=  \frac{3}{4}

Cos theta:

 =  >  \frac{Base}{Hypotenuse}

So,

 =  > cosB =  \frac{BD}{AB}  \\  \\  =  > cosB =  \frac{4}{5}

Then,

 {sin}^{2}B +  {cos}^{2} B \\  \\  =  > (  \frac{3}{5} ) {}^{2}  + ( \frac{4}{5} ) {}^{2}  \\  \\  =  >  \frac{9}{25}  +  \frac{16}{25}  \\   \\  =  >  \frac{9 + 16}{25}  \\  \\  =  >  \frac{25}{25}  \\  \\  =  > 1

Cot theta:

 =  >  \frac{Base}{Perpendicular}  \\  \\  =  > cotB =  \frac{BD}{AD}  \\  \\  =  > cotB =  \frac{4}{3}

So,

tanC- cotB \\  \\  =  >  \frac{3}{4}  -  \frac{4}{3}  \\  \\  =  >  \frac{ 9 - 16}{12}  \\  \\  =  >  -  \frac{7}{12}

Hope it helps ☺️

Answered by madifletcher946
0

Answer:

oof

Step-by-step explanation:

Similar questions