Ello....
Prove that
![\sf\ \alpha+ \beta= \dfrac{-b}{a} \sf\ \alpha+ \beta= \dfrac{-b}{a}](https://tex.z-dn.net/?f=%5Csf%5C+%5Calpha%2B+%5Cbeta%3D+%5Cdfrac%7B-b%7D%7Ba%7D)
![\sf\ \alpha \beta= \dfrac{c}{a} \sf\ \alpha \beta= \dfrac{c}{a}](https://tex.z-dn.net/?f=+%5Csf%5C+%5Calpha+%5Cbeta%3D+%5Cdfrac%7Bc%7D%7Ba%7D)
if ![\sf\ \alpha = \dfrac{-b+\sqrt{b^2-4ac}}{2a} \sf\ \alpha = \dfrac{-b+\sqrt{b^2-4ac}}{2a}](https://tex.z-dn.net/?f=%5Csf%5C+%5Calpha+%3D+%5Cdfrac%7B-b%2B%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D)
![\sf\ \beta = \dfrac{-b-\sqrt{b^2-4ac}}{2a} \sf\ \beta = \dfrac{-b-\sqrt{b^2-4ac}}{2a}](https://tex.z-dn.net/?f=%5Csf%5C+%5Cbeta+%3D+%5Cdfrac%7B-b-%5Csqrt%7Bb%5E2-4ac%7D%7D%7B2a%7D)
Answers
Answered by
96
To prove :-
•
•
Proof :-
Given,
______
Now,
_______
Again,
_______________________________________________________________
BrainIyMSDhoni:
Great :)
Answered by
99
Similar questions
English,
3 months ago
English,
3 months ago
Math,
7 months ago
English,
7 months ago
Social Sciences,
1 year ago