Ello!! ❤️
Question : Refer to the attachment !!
#No spam
Answers
Refer to the attachment...
Step-by-step explanation:
Given :-
→ a cos∅ + b sin∅ = c .......(1) .
Now,
→ ( a cos∅ - b sin∅ )² + ( a sin∅ + b cos∅ )² .
→ ( a cos∅ - b sin∅ )² + ( a sin∅ + b cos∅ )² .= a²cos²∅ + b²sin²∅ - 2a sin∅ b cos∅ + a²cos²∅ + b²sin²∅ + 2a sin∅ b cos∅ .
→ ( a cos∅ - b sin∅ )² + ( a sin∅ + b cos∅ )² .= a²cos²∅ + b²sin²∅ - 2a sin∅ b cos∅ + a²cos²∅ + b²sin²∅ + 2a sin∅ b cos∅ .= a²sin²∅ + a²cos²∅ + b²cos²∅ + b²sin²∅ .
→ ( a cos∅ - b sin∅ )² + ( a sin∅ + b cos∅ )² .= a²cos²∅ + b²sin²∅ - 2a sin∅ b cos∅ + a²cos²∅ + b²sin²∅ + 2a sin∅ b cos∅ .= a²sin²∅ + a²cos²∅ + b²cos²∅ + b²sin²∅ .= a²( sin²∅ + cos²∅ ) + b²( cos²∅ + sin²∅ ) .
→ ( a cos∅ - b sin∅ )² + ( a sin∅ + b cos∅ )² .= a²cos²∅ + b²sin²∅ - 2a sin∅ b cos∅ + a²cos²∅ + b²sin²∅ + 2a sin∅ b cos∅ .= a²sin²∅ + a²cos²∅ + b²cos²∅ + b²sin²∅ .= a²( sin²∅ + cos²∅ ) + b²( cos²∅ + sin²∅ ) .= a² + b² . [ ∵ sin²∅ + cos²∅ = 1 ] .
→ ( a cos∅ - b sin∅ )² + ( a sin∅ + b cos∅ )² .= a²cos²∅ + b²sin²∅ - 2a sin∅ b cos∅ + a²cos²∅ + b²sin²∅ + 2a sin∅ b cos∅ .= a²sin²∅ + a²cos²∅ + b²cos²∅ + b²sin²∅ .= a²( sin²∅ + cos²∅ ) + b²( cos²∅ + sin²∅ ) .= a² + b² . [ ∵ sin²∅ + cos²∅ = 1 ] .Thus, ( a cos∅ - b sin∅ )² + ( a sin∅ + b cos∅ )² = ( a² + b² ) .
→ ( a cos∅ - b sin∅ )² + ( a sin∅ + b cos∅ )² .= a²cos²∅ + b²sin²∅ - 2a sin∅ b cos∅ + a²cos²∅ + b²sin²∅ + 2a sin∅ b cos∅ .= a²sin²∅ + a²cos²∅ + b²cos²∅ + b²sin²∅ .= a²( sin²∅ + cos²∅ ) + b²( cos²∅ + sin²∅ ) .= a² + b² . [ ∵ sin²∅ + cos²∅ = 1 ] .Thus, ( a cos∅ - b sin∅ )² + ( a sin∅ + b cos∅ )² = ( a² + b² ) .⇒ c² + ( a sin∅ + b cos∅ )² = ( a² + b² ) .
→ ( a cos∅ - b sin∅ )² + ( a sin∅ + b cos∅ )² .= a²cos²∅ + b²sin²∅ - 2a sin∅ b cos∅ + a²cos²∅ + b²sin²∅ + 2a sin∅ b cos∅ .= a²sin²∅ + a²cos²∅ + b²cos²∅ + b²sin²∅ .= a²( sin²∅ + cos²∅ ) + b²( cos²∅ + sin²∅ ) .= a² + b² . [ ∵ sin²∅ + cos²∅ = 1 ] .Thus, ( a cos∅ - b sin∅ )² + ( a sin∅ + b cos∅ )² = ( a² + b² ) .⇒ c² + ( a sin∅ + b cos∅ )² = ( a² + b² ) .⇒ ( a sin∅ - b cos∅ )² = ( a² + b² - c² ) .
→ ( a cos∅ - b sin∅ )² + ( a sin∅ + b cos∅ )² .= a²cos²∅ + b²sin²∅ - 2a sin∅ b cos∅ + a²cos²∅ + b²sin²∅ + 2a sin∅ b cos∅ .= a²sin²∅ + a²cos²∅ + b²cos²∅ + b²sin²∅ .= a²( sin²∅ + cos²∅ ) + b²( cos²∅ + sin²∅ ) .= a² + b² . [ ∵ sin²∅ + cos²∅ = 1 ] .Thus, ( a cos∅ - b sin∅ )² + ( a sin∅ + b cos∅ )² = ( a² + b² ) .⇒ c² + ( a sin∅ + b cos∅ )² = ( a² + b² ) .⇒ ( a sin∅ - b cos∅ )² = ( a² + b² - c² ) .⇒ ( a sin∅ - b cos∅ ) = ±√( a² + b² - c² ) .