Math, asked by Nereida, 1 year ago

♥'ELLO♥

SOLVE THESE:-

(1)32x {}^{10}  - 31 {x}^{5}  - 1 = 0
(2)10x +  \sqrt{x}  - 2 = 0
(3)3 \sqrt{x}  +( 5 \div  \sqrt{x} ) = 16
...ALL THE BEST...​

Answers

Answered by brunoconti
13

Answer:

Step-by-step explanation:

BRAINLIEST BRAINLIEST BRAINLIEST

Attachments:

Nereida: thanks
Answered by Anonymous
18

Answer :-

(1)

 32x^{10} -31x^5 - 1 = 0

Let  x^5 = t

Then equation :-

 \implies 32t^2 -31t - 1 = 0

\implies 32t^2 -32t  + t -1 = 0

\implies 32t(t-1) +1(t-1) = 0

 \implies (32t + 1)(t-1) = 0

 \implies t = \dfrac{-1}{32} ,\: 1

 \implies x^5 = \dfrac{-1}{32} ,\: 1

\bold{ \implies x = 1 ,\: \dfrac{-1}{2}}

(2).

 10x + \sqrt{x} -2 = 0

\implies  10x + 5\sqrt{x} -4\sqrt{x} -2 = 0

 \implies 5\sqrt{x}(2\sqrt{x} + 1) -2(2\sqrt{x} + 1) = 0

 \implies (2\sqrt{x} + 1)(5\sqrt{x} - 2)= 0

 \implies \sqrt{x} = \dfrac{-1}{2} ,\: \dfrac{2}{5}

But as square root of any Real Number cannot be negative .

Hence

 \sqrt{x} = \dfrac{2}{5} \\\\ Or \:\bold{ x = \dfrac{4}{25} }

(3).

3\sqrt{x} + \dfrac{5}{\sqrt{x}} = 16

On multiplication of both sides by √x

\implies 3x +5 = 16\sqrt{x}

\implies 3x - 16\sqrt{x} + 5 = 0

 \implies 3x - 15\sqrt{x} - \sqrt{x} + 5 = 0

 \implies 3\sqrt{x}(\sqrt{x} - 5) -1(\sqrt{x} - 5) = 0

 \implies (\sqrt{x} - 5)(3\sqrt{x} -1) = 0

\implies \sqrt{x} = \dfrac{1}{3} ,\: 5

\implies \bold{x  = \dfrac{1}{9} ,\: 25}


Nereida: *BEST*
Anonymous: ^_^
Similar questions