Math, asked by Braɪnlyємρєяσя, 5 months ago




★ELLOH ㋡



\huge \mathfrak \orange{❥QUESTION}



★ Volume and surface area of a solid hemisphere are numerically equal. What is the diameter of hemisphere?



routdenanshi: are you married
Itzunknownhuman: wht kind of question is tht . this is a learning app not tind.er. there r
Itzunknownhuman: there r even 8 yr old here
routdenanshi: sorry
routdenanshi: i don't do such type of mistake again.
Itzunknownhuman: gd
Braɪnlyємρєяσя: HAHA
routdenanshi: hii everyone
routdenanshi: what's up

Answers

Answered by Itzunknownhuman
1

Answer:

9 units

Hence, diameter of the hemisphere is equal to 9 units.

Step-by-step explanation:

. here u go.

please make me brainlest and thank me. hope this might help

Attachments:
Answered by iTzShInNy
3

{ \underline{ \underline{\bf \pink❊QueStiOn \purple❊} }} \\

➡️Volume and surface area of a solid hemisphere are numerically equal. What is the diameter of hemisphere?

 \\  \\

{ \underline{ \underline{\bf \pink❊GiVeN\purple❊} }} \\

 \small \sf \: Volume \: of \: a \: hemisphere⇝Surface  \: area \: of \: a \: hemisphere

(⚝ That means the Volume of a hemisphere is equal to the surface area of a hemisphere . ⚝)

 \\  \\

{ \underline{ \underline{\bf \pink❊To \: FiNd\purple❊} }} \\

  • \small \sf \: Diameter \: of \: the \: hemisphere

 \\  \\

{ \underline{ \underline{\bf \pink❊ForMulA\purple❊} }} \\

  • \small \sf \: Volume \: of \: a \: hemisphere⇝ \frac{2}{3} \pi  {r}^{3}  \\
  • \small \sf \: Surface  \: area \: of \: a \: hemisphere ⇝3\pi  {r}^{2}  \\

 \\  \\

{ \underline{ \underline{\bf \pink❊SoLuTion \purple❊} }} \\

 \small \bf According \: to \: the \: Question, \\

 \small \sf  \implies  \frac{2}{3} \pi  {r}^{3}  = 3\pi  {r}^{2}   \\

\small \sf  \implies  \frac{2}{3}   = 3{r}^{}   \\

\small \sf  \implies  3r =  \frac{2}{3}   \\

\small \sf  \implies  r= \frac{9}{2}   \\

 \small \sf \: We  \: know, \\

 \small \sf \boxed{ \bf Diameter=2 \times radius}

 \small \sf \implies \: Diameter= \cancel2 \times  \frac{9}{ \cancel2}  \\

 \small \sf \implies \: Diameter=9 \\

 \\  \\

 \underline{ \sf \: More \: Information:-}

 \\

  •  \small \sf \: Volume  \: of \: a \: Cuboid  \large\leadsto  \small \boxed{ \bf l \times b \times h}

 \\

  •  \small \sf \: Volume  \: of \: a \: Cube \large\leadsto  \small \boxed{ \bf  {a}^{3} }

 \\

  •  \small \sf \: Volume  \: of \: a \: Cylinder  \large\leadsto  \small \boxed{ \bf \pi  {r}^{2}h }

 \\

  •  \small \sf \: Volume  \: of \: a \:Cone\large\leadsto  \small \boxed{ \bf  \frac{1}{3}\pi r {}^{2} h }

 \\

  •  \small \sf \: Volume  \: of \: a \: Sphere \large\leadsto  \small \boxed{ \bf  \frac{4}{3} \pi r {}^{3} }

 \\

  •  \small \sf \: Volume  \: of \: a \: Hemisphere \large\leadsto  \small \boxed{ \bf  \frac{2}{3}\pi  {r}^{3}  }

 \\

 \\

Similar questions