Math, asked by swagmaster, 1 year ago

elooo oooo
Question:

[text]

In the attachment above.
answer it.

please watch radhakrishn on star bharat...!
[/ text]​

Attachments:

Answers

Answered by AbhijithPrakash
108

Answer:

\dfrac{1+\tan ^2\mathrm{A}}{1+\cot ^2\mathrm{A}}=\dfrac{\sec ^2\left(x\right)}{\csc ^2\mathrm{A}}

Step-by-step explanation:

\rule{300}{1.05}

\dfrac{1+\tan ^2\mathrm{A}}{1+\cot ^2\mathrm{A}}

\rule{300}{1.05}

\mathrm{Use\:the\:following\:identity}:\quad \sec ^2\mathrm{A}-\tan ^2\mathrm{A}=1

\rule{300}{1.05}

\mathrm{Therefore\:}1+\tan ^2\mathrm{A}=\sec ^2\mathrm{A}

=\dfrac{\sec ^2\mathrm{A}}{1+\cot ^2\mathrm{A}}

\rule{300}{1.05}

\mathrm{Use\:the\:following\:identity}:\quad \:-\cot ^2\mathrm{A}+\csc ^2\mathrm{A}=1

\mathrm{Therefore\:}1+\cot ^2\mathrm{A}=\csc ^2\mathrm{A}

=\dfrac{\sec ^2\mathrm{A}}{\csc ^2\mathrm{A}}

\rule{300}{1.05}

=\dfrac{\sec^2\mathrm{A}}{1}\times\dfrac{1}{\csc^2\mathrm{A}}

\rule{300}{1.05}

=\dfrac{\sin^2\mathrm{A}}{\cos^2\mathrm{A}}

=\tan^2\mathrm{A}

Answered by Anonymous
168

# Heya Mate #

Here is your answer

_______________________________

 \frac{1 +  {tan}^{2}a }{1 +  {cot}^{2} a }  \\  \\

By using identities

 i \:  \:  \: {sec}^{2} a -  {tan}^{2} a \:  = 1 \\ ii \:  \: {cosec}^{2}  a -  {cot}^{2} a = 1

Now, by putting these identities in the question

A. T. Q

 \frac{1 +  {tan}^{2}a }{ 1 +  {cot}^{2}a }  \\  \\  =  \frac{ {sec}^{2}a }{ {cosec}^{2}a }  \\

Now,

Put the value of sec^2A and Cosec ^2A

which is

i. Sec^2A = 1/ Cos^2A

ii. Cosec^2A= 1/Sin^2A

Now again A.T. Q.

 \frac{1}{ {cos}^{2} a}   \div  \frac{1}{ {sin}^{2}a }   \\  \\ now \\  \\  \frac{1}{ {cos}^{2} a}  \times   \frac{ {sin}^{2}a }{1} \\  \\  \frac{ {sin}^{2}a }{ {cos}^{2} a} \\  \\  =  {tan}^{2} a

In the last step we use the identity :-

Sin^2A/Cos^2A = Tan^2A

So, your answer is

 {tan}^{2} a

_____________________

Hope it helped

Mark as brainliest

:-)

✌ ✌ ✌ ✌ ThorBrainly ✌ ✌ ✌ ✌

Similar questions