Energy of an electromagnetic spectrum is 1.9875*10^-12 ergs. Its wave number in cm^-1 is
Answers
The energy of electromagnetic radiation is . What is wavenumber in cm ?
We have the following data:
E (Energy of an Atom ) =
h (Planck’s Constant) =
c (Speed of Light) ≈
λ (Wavenumber or Wavelength of Photon) = ? (in cm)
We apply the data to the formula of Energy of an atom, we have:
E = h*\dfrac{c}{\lambda}
19.875*10^{-13}\:ergs = 6.625*10^{-27}\:ergs/s*\dfrac{3*10^{10}\:m/s}{\lambda}
\lambda = \dfrac{6.625*10^{-27}\:ergs\!\!\!\!\!\!\!\!\!\!\!\!\!\dfrac{\hspace{0.8cm}}{~}/\diagup\!\!\!\!s*3*10^{10}\:cm/\diagup\!\!\!\!s}{19.875*10^{-13}\:ergs\!\!\!\!\!\!\!\!\!\!\!\!\!\dfrac{\hspace{0.8cm}}{~}}
\lambda = \dfrac{1.9875*10^{-16}\:cm}{19.875*10^{-13}}
\lambda = \dfrac{1.9875\:cm}{19.875}*10^{-16-(-13)}
\lambda = \dfrac{1.9875\:cm}{19.875}*10^{-16+13}
\lambda = 0.1\:cm*10^{-3}
\boxed{\boxed{\lambda = 1*10^{-4}\:cm}}\Longleftarrow(wavenumber)\:\:\:\:\:\:\bf\purple{\checkmark}