Psychology, asked by jainayikon4653, 25 days ago

Enumerate examples of processes that untilize nagative feedback lops

Answers

Answered by warrior215
0

Answer:

Negative Feedback Loops

A negative feedback loop occurs in biology when the product of a reaction leads to a decrease in that reaction. In this way, a negative feedback loop brings a system closer to a target of stability or homeostasis. Negative feedback loops are responsible for the stabilization of a system, and ensure the maintenance of a steady, stable state. The response of the regulating mechanism is opposite to the output of the event.

Example 1: Temperature Regulation

Temperature regulation in humans occurs constantly. Normal human body temperature is approximately 98.6°F. When body temperature rises above this, two mechanisms kick in the body begins to sweat, and vasodilation occurs to allow more of the blood surface area to be exposed to the cooler external environment. As the sweat cools, it causes evaporative cooling, while the blood vessels cause convective cooling. Normal temperature is regained. Should these cooling mechanisms continue, the body will become cold. The mechanisms which then kick in are the formation of goose bumps, and vasoconstriction. Goosebumps in other mammals raise the hair or fur, allowing more heat to be retained. In humans, they tighten the surrounding skin, reducing (slightly) the surface area from which to lose heat. Vasoconstriction ensures that only a small surface area of the veins is exposed to the cooler outside temperature, retaining heat. Normal temperature is regained.

Example 2: Blood Pressure Regulation (Baroreflex)

Blood pressure needs to remain high enough to pump blood to all parts of the body, but not so high as to cause damage while doing so. While the heart is pumping, baroreceptors detect the pressure of the blood going through the arteries. If the pressure is too high or too low, a chemical signal is sent to the brain via the glossopharyngeal nerve. The brain then sends a chemical signal to the heart to adjust the rate of pumping: if blood pressure is low, heart rate increases, while if blood pressure is high, heart rate decreases.

Example 3: Osmoregulation

Osmoregulation refers to the control of the concentration of various liquids within the body, to maintain homeostasis. We will again look at an example of a fish, living in the ocean. The concentration of salt in the water surrounding the fish is much higher than that of the liquid in the fish. This water enters the fish diffusion through the gills, through food consumption, and through drinking. Also, because the concentration of salt is higher outside than inside the fish, there is passive diffusion of salt into the fish and water out of the fish. The salt concentration is then too high in the fish, and salt ions must be released through excretion. This occurs via the skin, and in very concentrated urine. In addition, high salt levels in the blood are removed via active transport by the chloride secretory cells in the gills. The correct salt concentration is thus maintained.

[Mark me as brainliest]

Similar questions