Biology, asked by petterdeka7334, 11 months ago

Enumerate the structure of peculiraties of endoplasmic raticulam and it's functions of regulation of protein synthesis ?​

Answers

Answered by Anonymous
1

Answer:

The outer (cytosolic) face of the rough endoplasmic reticulum is studded with ribosomes that are the sites of protein synthesis. ... The smooth endoplasmic reticulum lacks ribosomes and functions in lipid synthesis but not metabolism, the production of steroid hormones, and detoxification.

Answered by shaun5
5

Explanation:

The endoplasmic reticulum (ER) is a type of organelle found in eukaryotic cells that forms an interconnected network of flattened, membrane-enclosed sacs or tube-like structures known as cisternae. The membranes of the ER are continuous with the outer nuclear membrane. The endoplasmic reticulum occurs in most eukaryotic cells, but is absent from red blood cells and spermatozoa.

The endoplasmic reticulum serves many general functions, including the folding of protein molecules in sacs called cisternae and the transport of synthesized proteins in vesicles to the Golgi apparatus. Correct folding of newly made proteins is made possible by several endoplasmic reticulum chaperone proteins, including protein disulfide isomerase (PDI), ERp29, the Hsp70 family member BiP/Grp78, calnexin, calreticulin, and the peptidylpropyl isomerase family. Only properly folded proteins are transported from the rough ER to the Golgi apparatus – unfolded proteins cause an unfolded protein response as a stress response in the ER. Disturbances in redox regulation, calcium regulation, glucose deprivation, and viral infection or the over-expression of proteins can lead to endoplasmic reticulum stress response (ER stress), a state in which the folding of proteins slows, leading to an increase in unfolded proteins. This stress is emerging as a potential cause of damage in hypoxia/ischemia, insulin resistance, and other disorders.

Since the functions of VCP are determined by its cofactors, evaluating the roles of VCP’s cofactors in dendritic spine formation may reveal how VCP controls dendritic spine formation. Based on this rationale, two major cofactors of VCP—namely the UFD1L-NPL4 heterodimer and P47—have been knocked down individually in cultured hippocampal neurons. Although the UFD1L-NPL4 heterodimer is well-known to guide VCP’s regulation of protein degradation and chromatin-associated processes , knockdown of UFD1L to disrupt the function of the UFD1L-NPL4 heterodimer did not influence the dendritic spine density of cultured hippocampal neurons , suggesting that UFD1L-NPL4 heterodimer-dependent processes are not critical to dendritic spine formation. In contrast, knockdown of P47 reduced dendritic spine density. Moreover, P47 overexpression rescued the spine phenotype caused by partially reduced VCP expression using a knockdown approach in cultured neurons, suggesting that P47 acts downstream in VCP-mediated dendritic spine formation.

keep smiling...

Attachments:
Similar questions