Epidemiological parameters for assessing air pollution
Answers
Answered by
0
Background: Air pollution epidemiology plays an integral role in both identifying the hazards of air pollution as well as supplying the risk coefficients that are used in quantitative risk assessments. Evidence from both epidemiology and risk assessments has historically supported critical environmental policy decisions. The extent to which risk assessors can properly specify a quantitative risk assessment and characterize key sources of uncertainty depends in part on the availability, and clarity, of data and assumptions in the epidemiological studies.
Objectives: We discuss the interests shared by air pollution epidemiology and risk assessment communities in ensuring that the findings of epidemiological studies are appropriately characterized and applied correctly in risk assessments. We highlight the key input parameters for risk assessments and consider how modest changes in the characterization of these data might enable more accurate risk assessments that better represent the findings of epidemiological studies.
Discussion: We argue that more complete information regarding the methodological choices and input data used in epidemiological studies would support more accurate risk assessments—to the benefit of both disciplines. In particular, we suggest including additional details regarding air quality, demographic, and health data, as well as certain types of data-rich graphics.
Conclusions: Relatively modest changes to the data reported in epidemiological studies will improve the quality of risk assessments and help prevent the misinterpretation and mischaracterization of the results of epidemiological studies. Such changes may also benefit epidemiologists undertaking meta-analyses. We suggest workshops as a way to improve the dialogue between the two communities.
Objectives: We discuss the interests shared by air pollution epidemiology and risk assessment communities in ensuring that the findings of epidemiological studies are appropriately characterized and applied correctly in risk assessments. We highlight the key input parameters for risk assessments and consider how modest changes in the characterization of these data might enable more accurate risk assessments that better represent the findings of epidemiological studies.
Discussion: We argue that more complete information regarding the methodological choices and input data used in epidemiological studies would support more accurate risk assessments—to the benefit of both disciplines. In particular, we suggest including additional details regarding air quality, demographic, and health data, as well as certain types of data-rich graphics.
Conclusions: Relatively modest changes to the data reported in epidemiological studies will improve the quality of risk assessments and help prevent the misinterpretation and mischaracterization of the results of epidemiological studies. Such changes may also benefit epidemiologists undertaking meta-analyses. We suggest workshops as a way to improve the dialogue between the two communities.
Answered by
2
Answer:
EPA has established national ambient air quality standards (NAAQS) for six of the most common air pollutants— carbon monoxide, lead, ground-level ozone, particulate matter, nitrogen dioxide, and sulfur dioxide—known as “criteria” air pollutants (or simply “criteria pollutants”).
Similar questions