Math, asked by tomarvansh, 1 month ago

equal chord of a circle equal distance from the centre​

Answers

Answered by MagicalPearl
219

\bf  \large\red{\mid{\overline{\underline{Statement \: given} \red{:-}}}\mid}

➺ Equal chords of a circle ( or congruent circles ) are equidistant from the centre (or centres).

 \\  \large \mathcal \color{purple} \underline{Given}{:-}

AB and CD are two equal chords of a circle.

where, AB = CD and OL ⊥ AB and OM ⊥ CD.

⠀⠀

 \large \mathcal \color{purple} \underline{To \:  \:  prove}{:-}

Chord AB and CD are equidistant from the centre O, i.e. OL = OM.

⠀⠀⠀

 \large \mathcal \color{purple} \underline{Construction}{:-}

Join OA and OC at point O.

⠀⠀⠀

 \large \mathcal \color{purple} \underline{Proof}{:-}

∵ The perpendicular from the centre of a chord bisects the chord. (Theorem 10.3)

⠀⠀

Therefore, ⠀⠀⠀⠀⠀⠀⠀

 \bf{OL ⊥ AB  \implies \: AL = \dfrac{1}{2}AB \:   \:   — \: eq.(i)}

 \bf{and, \:  OM ⊥ CD \implies CM=\frac{1}{2}CD \:  \:  — eq.(ii)}

 \\  \bf{But, \:  \:  \:  \:  \:  AB = CD}

 \bf{\implies \dfrac{1}{2}AB = \dfrac{1}{2}CD}

 \bf{\implies AL = CM \:  \:  \:  \:  [ using \: eq.(i) \: and \: (ii) ] \:  \:  — eq. (iii) }

 \\

Now, in right ∆s OAL and OCM, we have

⠀⠀⠀OA = OC ⠀⠀⠀( Radii of same circle )

⠀⠀⠀ AL = CM ⠀⠀ [ From eq. (iii) ]

and, ∠ALO = ∠ CMO ⠀⠀ ( Each 90° )

⠀⠀

⠀⠀⠀ So, ∆OAL ≅ ∆ OCM ⠀⠀( by R.H.S rule )

Thus, OL = OM⠀⠀( C.P.C.T. )

⠀⠀

Hence proved.

Attachments:

Anonymous: Outstanding :D
pandaXop: Nice !
Answered by xxPRACHIxx
15

Step-by-step explanation:

Equal chords of a circle ( or congruent circles ) are equidistant from the centre (or centres).

\begin{gathered} \\ \large \mathcal \color{purple} \underline{Given}{:-}\end{gathered}

Given

:−

AB and CD are two equal chords of a circle.

where, AB = CD and OL ⊥ AB and OM ⊥ CD.

⠀⠀

\large \mathcal \color{purple} \underline{To \: \: prove}{:-}

Toprove

:−

Chord AB and CD are equidistant from the centre O, i.e. OL = OM.

⠀⠀⠀

\large \mathcal \color{purple} \underline{Construction}{:-}

Construction

:−

Join OA and OC at point O.

⠀⠀⠀

\large \mathcal \color{purple} \underline{Proof}{:-}

Proof

:−

∵ The perpendicular from the centre of a chord bisects the chord. (Theorem 10.3)

⠀⠀

Therefore, ⠀⠀⠀⠀⠀⠀⠀

\bf{OL ⊥ AB \implies \: AL = \dfrac{1}{2}AB \: \: — \: eq.(i)}OL⊥AB⟹AL=

2

1

AB—eq.(i)

\bf{and, \: OM ⊥ CD \implies CM=\frac{1}{2}CD \: \: — eq.(ii)}and,OM⊥CD⟹CM=

2

1

CD—eq.(ii)

\begin{gathered} \\ \bf{But, \: \: \: \: \: AB = CD}\end{gathered}

But,AB=CD

\bf{\implies \dfrac{1}{2}AB = \dfrac{1}{2}CD}⟹

2

1

AB=

2

1

CD

\bf{\implies AL = CM \: \: \: \: [ using \: eq.(i) \: and \: (ii) ] \: \: — eq. (iii) }⟹AL=CM[usingeq.(i)and(ii)]—eq.(iii)

\begin{gathered} \\ \end{gathered}

Now, in right ∆s OAL and OCM, we have

⠀⠀⠀OA = OC ⠀⠀⠀( Radii of same circle )

⠀⠀⠀ AL = CM ⠀⠀ [ From eq. (iii) ]

and, ∠ALO = ∠ CMO ⠀⠀ ( Each 90° )

⠀⠀

⠀⠀⠀ So, ∆OAL ≅ ∆ OCM ⠀⠀( by R.H.S rule )

Thus, OL = OM⠀⠀( C.P.C.T. )

⠀⠀

Hence proved.

Similar questions